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ABSTRACT

A STUDY TO EVALUATE SCALES IN SOME TURBULENT FLOWS IN
VIEW OF QUANTIC BEHAVIOR OF TURBULENCE USING

EXPERIMENTAL RESULTS

Bekoğlu, Elif

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Mehmet Cevdet Çelenligil

Co-Supervisor: Prof. Dr. Cahit Çıray

August 2021, 124 pages

The knowledge of the energy contents, sizes, and lifetimes of eddies is necessary to

understand the structure of turbulent flows. The spectral approach can provide the

frequency-dependent energy spectrum, which helps to find out this structure. The

present study focuses on finding eddy sizes or wavelengths using the frequency-

dependent energy spectrum, which is consistent with the physics of turbulence. This

is because the eddy size is related to wavenumber. The turbulence studies in the litera-

ture use a dispersion relation that connects frequency to wavenumber. The mentioned

dispersion relation is generally used based on Taylor’s hypothesis, and examples of

this usage are frequently encountered in the literature. Nevertheless, this approach

has some deficiencies and limitations. As a result of this, several studies in the litera-

ture have tested and made corrections to this hypothesis. Some of them have tried to

find alternative methods.

The present thesis study includes the application of an alternative approach named

Quantic Behavior of Turbulence (QBT) proposed by Çıray [69, 70, 72]. With this
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approach, the nature of turbulence is explained with a dual character, including par-

ticle and wavy character. The mathematical procedure offered by this approach finds

wavenumber to corresponding frequency.

Within this study, the first step has been an implementation of this method to a Mat-

lab code. This computer code uses the spectral approach to obtain the spectrum in

the frequency domain. After that, the wavenumbers are provided by pursuing the

mathematical procedure of QBT. Then, several different types of turbulent flows have

been analyzed by this code. As a consequence of these analyses, the spectrum in

the wavenumber domain is obtained in accordance with the data from the literature.

With this approach, results such as sizes, lifespans, and energy contents of eddies are

calculated in conformity with physical behavior. It is aimed that this approach and

this study can contribute to more accurate understandings and solutions of turbulence

problems.

Keywords: the physics of turbulence, length scales, eddy sizes, energy spectrum
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ÖZ

DENEYSEL SONUÇLARI KULLANARAK TÜRBÜLANSIN KUANTİK
DAVRANIŞI YAKLAŞIMIYLA BAZI TÜRBÜLANSLI AKIMLARDA

ÖLÇEKLERİ DEĞERLENDİRMEYE YÖNELİK BİR ÇALIŞMA

Bekoğlu, Elif

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Cevdet Çelenligil

Ortak Tez Yöneticisi: Prof. Dr. Cahit Çıray

Ağustos 2021 , 124 sayfa

Günümüzde türbülanslı akımların yapısını anlamak için; türbülansı oluşturan çevrin-

tilerin boyutları, ömür süreleri ve enerji içeriklerinin bilinmesi gerekmektedir. Spekt-

ral yaklaşım, bu yapının bulunmasına yardımcı olan, frekansa bağlı enerji spektru-

munun elde edilmesini sağlayabilir. Bu tez çalışmasında, türbülansın fiziği ile tu-

tarlı olan frekansa bağlı enerji spektrumu kullanılarak, çevrintilerin boyutlarının yani

dalga boylarının bulunmasına odaklanılmaktadır. Bunun nedeni, türbülanslı akımlar-

daki çevrintilerin boyutlarının, dalga boyu ve dolayısıyla dalga sayısı ile ilişkili ol-

masıdır. Literatürdeki türbülansa yönelik çalışmalar, dalga sayısını elde etmek için

frekans ve dalga sayısı arasındaki saçılım ilişkisini kullanmaktadır. Bahsedilen saçı-

lım ilişkisi genellikle Taylor’ın donuk türbülans yaklaşımına dayanmaktadır ve lite-

ratürde, bu ilişkinin kullanıldığı çalışmalara sıklıkla rastlanılmaktadır. Fakat, bu yak-

laşımın bazı eksiklikleri ve sınırlamaları bulunmaktadır. Bu yüzden, literatürde bu

metot ile ilgili birçok çalışma bulunmaktadır. Bu çalışmaların bir kısmı metodu test

ederken, bir kısmı metot üzerinde düzeltme yapmakta ve diğer çalışmalar ise bu me-
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toda alternatif yöntem aramaktadır.

Mevcut tez çalışması, C. Çıray tarafından önerilen ve Taylor’ın yaklaşımına alternatif

olarak ortaya çıkmış olan Türbülansın Kuantik Davranışı metodunun uygulamala-

rından oluşmaktadır [69, 70, 72]. Bu metot, türbülansın doğasını, parçacık ve dalga

karakteri de dahil olmak üzere ikili bir karakter ile açıklamaktadır ve her bir frekansa

karşılık gelen dalga sayısının bulunabilmesi için matematiksel hesaplama prosedürü

sunmaktadır.

Mevcut tez çalışmasının ilk adımı, bu metodun Matlab kodu haline getirilmesidir.

Bahsedilen kod, frekansa bağlı enerji spektrumunu elde etmek amacıyla spektral yak-

laşımı kullanmaktadır. Sonrasında, alternatif metodun matematiksel prosedürü takip

edilerek her bir frekansa karşılık gelen dalga sayıları elde edilir. Bu çalışmada, bah-

sedilen kod kullanılarak, çeşitli türbülanslı akım deneylerinin analizi yapılmıştır. Bu

analizlerin sonucu olarak, dalga sayısına bağlı enerji spektrumu, literatürdeki çalış-

malarla uyumlu bir şekilde elde edilmiştir. Böylece, çevrintilerin boyutları, ömürleri

ve enerji içerikleri de türbülansın fiziksel davranışına uygun olarak hesaplanmıştır.

Literatüre C. Çıray tarafından kazandırılan bu yaklaşımla ve bu yaklaşımın farklı

akımlara uygulanmasıyla, türbülansın fiziğinin daha doğru anlaşılması ve türbülansa

yönelik endüstriyel problemlerin çözümüne katkıda bulunulması hedeflenmiştir.

Anahtar Kelimeler: türbülansın fiziği, uzunluk ölçekleri, çevrinti boyutları, enerji

spektrumu
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CHAPTER 1

INTRODUCTION

1.1 Turbulence and Length Scales

A large part of the flows observed in nature and those created in laboratories or indus-

trial applications are turbulent flows for most of the cases. In other words, from the

water flowing in the tap to the ocean currents, from the natural gas carried by pipes

to the flow surrounding cars, airplanes, submarines, ships are all turbulent flows. It

is understood that turbulent flow has a wide range of appearances in nature and the

applications in industry [86]. These flows can cover large and small space dimen-

sions. The widespread existence of turbulent flow requires understanding its physics

and solving it mathematically in many engineering applications. Even today, there

does not seem to exist a unified theory for turbulent flows.

Turbulent flow has a random character in essence. This means that all turbulent flow

properties are random functions of time and space, that motion is unpredictable. This

description, which distinguishes turbulence from laminar, was observed by Reynolds

with his historical experiments and was introduced in [73, 74]. Reynolds also gave at

the same time governing equations of turbulent flow, called today Reynolds Averaged

Navier-Stokes (RANS) equations. In this approach, any instantaneous quantity is

separated into mean (time-averaged) and fluctuation parts. Then, Navier-Stokes (N-

S) equations are written with these separated quantities, and the average of these

equations is taken. The difference from the RANS and N-S equations can be classified

with three items:

(i) Instantaneous quantities seem to be replaced by the average quantities.
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(ii) The nonlinear terms in N-S equations give nonlinear combinations of the cor-

relations of the fluctuating velocity, which are called Reynolds stresses. These

terms represent the transport of momentum due to turbulent fluctuations [53].

(iii) In spite of the fact that turbulent flow is essentially random in character, RANS

equations are deterministic [62]. Since the statistical values of turbulent flow

properties are deterministic functions that depend on time and space [16], they

are used in RANS equations. This is also called statistical approach [58].

It is clear that to be able to solve RANS equations, one needs to know the distribution

of Reynolds stress term in the interested domain. This term is the average of the prod-

ucts of fluctuation velocities in different directions. Its space derivative appears in the

momentum equation. However, this term is not easy to calculate. In order to be able

to measure velocities in different directions at the same time and obtain their space

derivative, measurements should be made in more than one location and for more

than one direction. Considering that the experimental uncertainty and measurement

probes will also affect the flow, it is challenging to measure this term realistically by

experiment. As a result, another method to obtain Reynolds stresses is needed, and

modeling them is found as a solution.

One of the first studies for turbulence models is Boussinesq’s hypothesis, published

in 1877 [9], and provides an expression that allows calculating the Reynolds stress

tensor. This assumption relates shear stress to mean velocity gradients and a new

defined constant, eddy viscosity. Later, the mixing length approach was proposed by

Taylor and Prandtl at the same time [83], [64]. This approach is almost the same as

the Boussinesq hypothesis. The different point is that eddy viscosity is not a fixed

value and depends on the turbulent length scale, which is a flow-dependent variable

[16]. Knowledge of this scale is required by eddy viscosity based turbulence models

such as Spalart-Allmaras, k−ε, and k−ω [79]. More detailed information about this

scale is given in the following parts.

Many turbulence models, including the mentioned ones, are used frequently in litera-

ture. These models are based on semi-empirical equations and use several correction

constants obtained by experiments. Since they have no strong physical background,

they give satisfying results for specific cases and those with boundary conditions sim-
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ilar to these cases. Another critical point is that it is not possible to understand the

effects of turbulence fluctuations using these turbulence models. Therefore, an al-

ternative method, Large Eddy Simulation (LES), is suggested to solve this problem.

The turbulent flow consists of coherent turbulent structures at different sizes named

eddies, which are discussed later. While the large eddies are affected by the boundary

conditions of flow, small eddies are universal for all turbulent flows if the Reynolds

number is sufficiently high. LES tries to simulate the instantaneous properties of

the flow in the interested domain considering the energy contribution of large eddies.

Even though LES models small scales and may not represent large eddies exactly

[16], it is important to understand turbulence structure, especially large eddies. Be-

cause in order to solve turbulence problems more accurately, a better understanding

of turbulence is a necessity.

The mentioned coherent structure of turbulence, eddy, is a group of fluid molecules

that act within a particular group for a period of time, and the group personality is

preserved during this time [72]. The concept of personality is perceived in different

ways. For instance, while Prandtl assumes personality as momentum, Taylor takes it

as vorticity [71]. That is, turbulent flow is expressed as the movement of eddies. In

a turbulent flow, eddies of different sizes and different levels of kinetic energy exist.

Energy transfer between eddies was described as an energy cascade by Richardson in

1922 [75]. By this definition, the largest eddies are born due to the effects of boundary

conditions of flow. These eddies divide, forming smaller eddies and transferring their

energy to the eddies created by this division. The process continues in this manner

until the smallest eddies are formed. Finally, the smallest eddies disappear by viscous

dissipation.

A correct comprehension of energy transfer and viscous dissipation mechanism men-

tioned in specific turbulent flow cases is important for obtaining an accurate solu-

tion. This circumstance creates a requirement of obtaining sizes and energy contri-

butions of all eddies. In literature, eddy sizes are associated with the wavelengths,

so wavenumbers. Therefore, the energy contributions of eddies are represented as an

energy spectrum in the wavenumber domain, as given in Fig. 1.1. The first region

includes large eddies, and these eddies create velocity fluctuations in low frequency.

They are mostly affected by the boundary conditions of flow. As it can be seen from
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Fig. 1.1, these eddies are in the largest sizes. So, they correspond to the small-

est wavenumber values. The second region is related to the energetic eddies. Their

energy density, E(k), is very high and has a peak in this region. These eddies are

represented by the integral scale, L, as eddy size. This scale is comparable to the

characteristic length of flow, such as diameter for pipe flow, chord for flow around

an airfoil. The universal equilibrium region is the last in the energy spectrum. Kol-

mogorov introduced two similarity hypotheses about this region in 1941 [46].

Figure 1.1: Regions of the energy spectrum where E(k) is the energy density, and k

is wavenumber reproduced from Figure XIV. 20 in [16]

The first hypothesis says that the statistics of the small-scale motions are universal.

The only condition is being Reynolds number sufficiently high. If it is performed,

small-scale motions are independent of the boundary conditions of flow and universal.

In the second hypothesis, inertial subrange under the universal equilibrium range is

defined, and in this region, the energy dissipation rate is independent of viscosity. In

inertial subrange, energy density, E(k) is found as proportional to k−5/3. This region

is represented by the Taylor microscale, λ [84]. The second subrange of this universal

equilibrium range consists of the dissipating eddies. The viscous dissipation occurs

very rapidly. The representative length scale of this region is the Kolmogorov scale,

ηk as shown in Fig. 1.1.1

1 Although the Kolmogorov scale is indicated with η in the literature, it is shown with symbol ηk in this study
to avoid any symbolic problems.
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The regions of the energy spectrum can be understood better on a logarithmic scale,

as shown in Fig. 1.2. The axes of the spectrum are plotted as non-dimensional. In

the large eddies region, the difference of boundary conditions of the flows is more

apparent. However, the inertial subrange has a −5/3 slope for all cases, and the

dissipating eddies also have the same behavior.

Figure 1.2: 1-D longitudinal scaled energy spectrum of different experiments on log-

arithmic scale, Reλ = 30, 70, 130, 300, 600, 1500 (lines from down to up) where

E(κ1)/(εν5)1/4 is a non-dimensional spectrum function, ε is viscous dissipation rate,

ν is kinematic viscosity, and κ1 is wavenumber in longitudinal direction [62]. Exper-

imental data is provided by [4, 13, 17, 18, 36, 38, 44, 50, 77, 78, 87, 89].

Another issue that should be mentioned is how to obtain a wavenumber-dependent
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energy spectrum. Firstly, from experimental data of instantaneous velocity fluctua-

tions, frequency-dependent energy spectrum can be obtained by Fourier series analy-

sis. Fourier transform methods can be used for this purpose, such as Discrete Fourier

Transform (DFT) or Fast Fourier Transform (FFT). After transforming data to the fre-

quency domain from the time domain, a dispersion relation that relates frequency and

wavenumber is required. Taylor proposed a dispersion relation based on his frozen

turbulence hypothesis [84]. This relation is widely used in literature. The details and

use of this theory in literature are explained in the next subsection. Also, its applica-

tions and accuracy are evaluated because this thesis is based on applying a different

approach to some flow cases, which is an alternative to Taylor’s hypothesis.

1.2 Literature Review on Taylor’s Frozen Turbulence Hypothesis

The development of technology affects the solutions of fluid mechanics problems

and makes solutions more accurately. Computer simulations allow the evaluation of

entire flow fields and make turbulence phenomena more understandable. But still,

turbulence problems maintain their difficulty. One of the main problems is that there

does not seem to exist an applicable model for all turbulent flow cases. Another

problem is the need for the energy contributions and sizes of the eddies in existing

turbulence models solutions.

Taylor proposed that turbulence can be assumed frozen for special cases, such as

homogeneous and isotropic turbulence [84]. Therefore, the temporal and spatial gra-

dients can be associated, and eddy sizes can be obtained by a dispersion relation that

comes from this association. This assumption is based on the idea that if the velocity

fluctuations are small compared to mean velocity, the temporal gradient at a fixed

point in space is created by the spatial gradient due to mean velocity [55]. Physically,

it means that this hypothesis is useful if the timescale of eddies is larger than the time

to pass through the sensor [63].

Assume that G is a property of a turbulent flow at location ξ−∆ξ and time t−∆t as

shown in Fig. 1.3. According to Taylor’s frozen turbulence hypothesis, property G is

moved to location ξ with a constant velocity U in time ∆t in the x-direction without
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Figure 1.3: The representation of Taylor’s frozen turbulence hypothesis reproduced

from Figure XIV. 17 in [16]

any change [16]. So if the turbulence at the location ξ −∆ξ is frozen, property G is

only the function of space. In contrast, the temporal variation of G at location ξ and

time t is due to mean velocity U to carry the frozen turbulence. This situation can be

expressed mathematically as:

G(t)

∣∣∣∣
ξ

= G(ξ − U∆t) . (1.1)

Also, a new parameter ηT is defined as ηT = ξ − U∆t. Then, the time derivative of

the equality in Eqn. 1.1 is taken,

∂G

∂t

∣∣∣∣
ξ

= lim
∆t→0

∆G

∆t

∣∣∣∣
ξ

= lim
∆t→0

∆G

∆ηT
.
∆ηT
∆t

. (1.2)

For ∆t→ 0,

lim
∆t→0

∆G

∆ηT
=
∂G

∂ξ

∣∣∣∣
ξ

,
∆ηT
∆t

= −U . (1.3)

Therefore, Eqn. 1.2 can be written as:

∂G

∂t
= −U ∂G

∂ξ
, (1.4)

This is the mathematical representation of Taylor’s frozen turbulence hypothesis.
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Also, Eqn. 1.4 can be expressed as:

∂G

∂t
+ U

∂G

∂ξ
= 0 → DG

Dt
= 0 . (1.5)

So, the total derivative of G is zero [16]. In other words, property G does not change

while following the fluid particles according to this hypothesis. As can be seen from

Eqn. 1.4, the mean velocity U becomes convective velocity. Thus, the dispersion

relation and wavelength, L, based on Taylor’s hypothesis are,

k =
ω

U
, (1.6a) L =

U

ω
=

1

k
, (1.6b)

where k is wavenumber and ω is circular frequency, ω = 2πf , and f is frequency.

Consequently, wavenumber (wavelength, it is assumed to correspond to the eddy size

in the literature) can be calculated by Taylor’s frozen turbulence hypothesis. It should

be pointed out that this hypothesis is valid for homogenous and isotropic turbulence at

the low-intensity level and uniform mean flow. When the literature on this hypothesis

is reviewed, it is observed that this hypothesis is widely used. Unfortunately, several

researchers showed that this hypothesis is not satisfactory.

Lee et al. applied this hypothesis to the grid-generated (decaying) compressible tur-

bulent flow and compared results with those of experiments and Direct Numerical

Simulations (DNS) [51]. They computed turbulence statistics such as space-time cor-

relations of fluctuations in velocity, vorticity, and dilatation. They observed that this

hypothesis agrees well with the simulations and experiments for the incompressible

part. However, according to their results, this hypothesis does not perform well for

the compressible part. Lin questioned the accuracy of applying Taylor’s hypothe-

sis to shear flows theoretically [52]. He emphasized that the size and properties of

eddies change significantly due to the shear effect. He concluded that pressure and

nonlinear terms cannot be neglected, and therefore it would not be correct to use this

hypothesis in shear flow. Heskestad proposed an alternative relation for shear flows

allowing high turbulent intensities to compute the mean-square space derivative from

the mean-square time derivative using hotwire techniques [42]. In this relation, unlike

the Taylor hypothesis, the instantaneous velocity is taken as convective velocity. He

performed tests of turbulent plane jet to check his relation and observed that it gives

accurate results at only high Reynolds numbers.
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Turbulent flow properties are usually expressed by the velocity correlations in space,

time and space-time. Therefore, especially in flows with high turbulent intensity,

the fluctuation velocity, which is constantly changing, should be taken into account

in calculations, as well as the mean flow. Fisher and Davies conducted the experi-

ments at the mixing region of a jet using hotwire anemometer [32]. They observed

the significant difference between the convection velocity and average velocity for

high turbulence intensity. Also, they concluded that the convective velocity cannot

be determined as a single value for the entire domain. Zaman et al. studied the con-

venience of Taylor’s hypothesis on large-scale turbulent structures in a circular air

jet [99]. They compared spatial distributions of turbulent flow properties obtained

using their hotwire measurements at different locations and Taylor’s hypothesis. It

is noticed that this hypothesis gives accurate results if the turbulent flow structures

are not interacting with each other and there are no rapid changes. However, if these

conditions exist, the significant distortions of convective velocity from mean velocity

are observed. Also, they checked if the convection velocity is taken as local mean

or instantaneous velocity. They concluded that when the large-scale structures are

observed, none of these velocities and Taylor’s hypothesis gives accurate results.

The following table is a list of convective velocities as observed or proposed by differ-

ent researchers [37]. The ratios of convective velocity, Uc, to the mean velocity, U0,

and the specific flow cases in which they are used and regions or conditions specified

are given in Table 1.1.

Table 1.1: Convective velocities used in the literature [37] where D is diameter and

M is mesh size of grids.

Flow field Reference Region or Condition Uc/U0

Round jet

sssBradshaw (1967) [10]sss noise production 0.10 - 0.80

region

Brunn (1977) [11] - 0.60 - 0.68

Davies (1963) [21] potential core 0.20 - 0.61

mix region

Lau (1975) [49] - 0.63 - 0.69
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Table 1.1 Continued: Convective velocities used in the literature [37] where D is

diameter and M is mesh size of grids.

Flow field Reference Region or Condition Uc/U0

Round jet

Davis (1975) [22] supersonic 0.40− 0.70

Wills (1964) [93] D = 2 in. 0.10 - 0.80

Wilson (1970) [94] D = 1 in. 0.667

Wygnanski (1969) [96] D = 1.04 in. 0.40 - 1.05

Wooldridge (1972) [95] core and mixing 0.68

region D = 1.5 in.

Ko (1971) [45] D = 2.5 in. 0.65 - 0.75

Boundary

layer

Favre (1967) [31] - 0.80 - 1.28

Kovasznay (1970) [47] - 0.93

Bull (1967) [12] - 0.53 - 0.825

Blackwelder (1977) [8] - 0.80

Willmarth (1962) [92] - 0.56 - 0.83

Grid

Favre (1965) [30] M = 1 in. 1.0

Comte-Bellot (1971) [18] M = 5.08 cm 1.0

Sepri (1976) [81] Heated grid ≥ 1.0

Frenkiel (1966) [33] M = 2.54 cm 1.0

Pipe

Baldwin (1961) [6] Centre-line 1.16

D = 8 in.

Heidrick (1971) [40] Near wall center-line > 1.0

D = 3.1 in.

Willmarth (1959) [91] D = 4 in. 0.82

Corcos (1962) [20] - 0.80 - 0.90

McConachie (1981) [54] - 0.75 - 1.12

Homogeneous Champagne (1970) [13] - ∼ 1.0

shear flow

Atmospheric Antonia (1979) [3] - 0.58 - 0.89
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Table 1.1 Continued: Convective velocities used in the literature [37] where D is

diameter and M is mesh size of grids.

Flow field Reference Region or Condition Uc/U0

Supersonic Demetriades (1976) [26] - ∼ 1.0

wake flow

Wake of Oswald (1971) [59] - 0.99

disk

2-D Mixing Wygnanski (1970) [97] - 0.85

region Batt (1977) [7] - < 1

Wall jet Chanaud (1970) [14] - 0.50

Channel Rajagopalan (1980) [67] - 0.62 - 0.96

As it can be seen, there is no generally accepted convective velocity. In addition, there

is no acceptable physics for Taylor’s hypothesis.

In another study in the literature, Alamo and Jimenez estimated the convection ve-

locities of turbulence and tested Taylor’s hypothesis [25]. They used the ensemble

averages of local time derivatives to obtain convective velocities for channel flow.

Also, they decided that the wall distance is correlated with eddy size or wavelength.

As a result of comparing the present method with Taylor’s hypothesis, they observed

that both ways agree far from the wall where the convection velocity is close to the

mean velocity. But they contradicted each other near the wall due to the significant

difference between convection velocity and mean profile.

The turbulence intensity near the wall region at the high Reynolds numbers is con-

siderable. This situation may be problematic for applying Taylor’s hypothesis. But

computation of these flow fields by DNS is significantly expensive [15]. Large Eddy

Simulation (LES) can be used because it requires less computational effort, but it can-

not solve near the wall region [60]. Thus, experimental measurements using hotwire

are needed. However, using hotwire is also not easy to get spatial and temporal gra-

dients simultaneously. Despite its inconveniences, Taylor’s hypothesis is still used.
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In recent years, with advancements in diagnostic technology, several experiments

could be made to check Taylor’s hypothesis or suggest an alternative method. Gana-

pathisubramani et al. made PIV (Particle Image Velocimetry) measurements on a

turbulent round jet to obtain velocity gradient tensor for resolving small and interme-

diate scale eddies [34]. Then, they compared their results with Taylor’s hypothesis,

which showed a good agreement. Davoust and Jacquin defined an optimum convec-

tion velocity from continuity equation to use Taylor’s hypothesis [23]. They made

turbulent jet experiments, used the Fourier transform of continuity to obtain velocity

gradients, and described optimum convection velocity as a function of frequency and

radius. They observed that results are acceptable for low frequencies for the core

and center of the mixing layer but not satisfying outside these regions and frequen-

cies. Another study about DNS analysis of Taylor’s hypothesis was done for turbulent

channel flow at low Reynolds number by Tardu and Vezin [82]. They concluded that

this hypothesis is not useful for the viscous sublayer and buffer layer. Other studies

that discussed Taylor’s hypothesis for turbulent channel flow at low Reynolds num-

bers by DNS, such as Zhang et al. [39], Zhao et al. [100], and Geng et al. [35],

concluded that this hypothesis becomes inaccurate with closing to the wall. Today,

there are still many studies in the literature that studied alternative convective velocity

definitions for specific flow cases like Dróżdż et al., Baars et al. and Yang et al. [28],

[5], [98].

This literature survey shows that there has been an intense interest to the application of

the frozen turbulence hypothesis. In this thesis, no use of frozen turbulence hypothesis

or its consequence such as Eqn. 1.6a are included or the only use of them in this

thesis just for the sake of the comparison of QBT results vs frozen turbulence concept

and consequences. All results shown in following pages are consequential to QBT

approach and related mathematics.

1.3 Literature Review on Length Scales in Turbulence

The studies about turbulent flow problems in the literature are based on dimensional

analysis and scaling laws. Therefore, identification of different length and time scales

is essential for turbulent flow problems. As mentioned before, turbulent flow consists
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of a wide range of eddies in terms of sizes, lifespans, and appearances. These eddies

appear and disappear with respect to space and time in a random fashion. Large scale

is considered in general with the integral scale, L [43]. Also, it has a critical role

in the transportation of momentum and energy. Physically, the size of large eddies

cannot exceed the boundaries of the flow [48].

Integral scale can be estimated in several different ways. For instance, it can be

roughly related to the characteristic length of flow, such as the chord of the airfoil,

the diameter of the pipe [48]. In the literature, several methods for the determination

of integral length scale are based on correlation or spectrum function [88]. One of

the standard ways is using the first zero crossing of the integrated autocorrelation

function, as discussed in [56]. For active grid studies, reaching zero of this function

is prohibited due to the energy content of eddies at low frequencies as in the study of

Dogan et al. [27]. Another typical method for obtaining integral scale is finding the

wavenumber corresponding to the peak of pre-multiplied energy spectra. Mydlarski

et al. proposed a relation based on this approach to find an integral scale in active

grid studies [57]. This relation requires rms of velocity fluctuations, u′, and viscous

dissipation rate, ε, to obtain integral scale. In another study published in 2014 as

a NASA technical report for the procedure of finding length scales, El-Gabry et al.

made hotwire experiments and analyzed the data by spectral approach as FFT [29].

They used the length scale formulations of macro and microscale eddies proposed

for grid turbulence studies by Roach [76]. These scales can be obtained with the

help of mean velocity, U , rms of velocity fluctuations, u′, and energy spectrum in the

frequency domain, E(f).

The size of the smallest eddies is determined by the Kolmogorov length scale, ηk.

This scale represents scales at which the division of eddies is over, and their energy

converts to heat due to viscous dissipation. According to Kolmogorov’s 1st similarity

hypothesis, this scale depends on the dissipation rate, ε, and viscosity, ν. In the liter-

ature studies, the dissipation rate is generally found by spatial derivatives calculated

from temporal derivatives based on Taylor’s hypothesis, as in the study of Dogan et

al. [27].

As defined before, another significant length scale widely mentioned in the literature
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is the Taylor microscale, λ. That is used for estimating the fluctuation strain rate.

This scale is calculated by kinematic viscosity, ν, rms of velocity fluctuations, u′, and

dissipation rate, ε, that is obtained by the spatial gradient found by Taylor’s hypothesis

[27], [85].

1.4 Motivation and Purpose of the Study

Thus far, the importance and example of calculations of length scales in turbulence

are introduced. It is observed that Taylor’s frozen turbulence hypothesis is frequently

used under any condition. Yet, many studies have been conducted to test its accuracy

and corrections to this hypothesis have been offered, e.g., [51], [52], [37], [42], [32],

[99], [25], [24], [34].

The criticisms about this hypothesis can be compiled in three groups:

• It is not applicable for small intensity cases, as Taylor proposed himself [84].

If turbulence fluctuations are close to mean flow velocity, it creates an extreme

error [98].

• Using the constant convective velocity for the entire flow field is a physically

wrong approach to the turbulent flow problems [99]. In particular, a gross error

is observed in the near the wall region for wall-bounded flows [25].

• For large-scale turbulent structures, this hypothesis does not satisfy the physics

[24]. For instance, if the size of the large eddy at 1 Hz frequency for a flow with

mean velocity, 10 m/s in 10 cm diameter pipe, is calculated by this hypothesis,

it is found as 1.59 m. It is not possible physically [70].

There are also alternative methods to Taylor’s hypothesis. However, these methods

consist of semi-empirical formulations for specific flow cases under some circum-

stances.

This study focuses on an alternative method, i.e., Quantic Behavior of Turbulence,

proposed by Çıray [69]. The differences of this approach from the methods used in

the literature can be summarized as:
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• QBT has a basis that seems to reflect the physics of the problem.

• The frequency-based spectrum is taken into consideration within the develop-

ment of calculations.

• This approach has been used for physically acceptable cases such as grid tur-

bulence, pipe flow, boundary layer, and flow around an airfoil [69].

• The eddy sizes, lifespans, and energy contributions of each frequency can be

obtained by following the mathematical procedure of QBT.

• In this approach, the smallest turbulent frequency is taken 1 Hz as a nominal

value. Our calculations in this work show that the intrinsic dimensions of the

flow domain is not reached at 1 Hz. If the intrinsic dimension of the domain

is taken as the largest eddy size, then a frequency less than 1 Hz can be ob-

tained. In this work, no study has been performed to find out what the smallest

frequency of turbulent is. One cycle per second or 1 Hz is taken as reference

value just for the sake of comparison.

1.5 The Content of the Thesis

The content of this master’s thesis consists of implementing the mentioned QBT to

a Matlab code and applying the developed code to the different flows measured by

hotwire. In Chapter 1, basic background information on turbulent flow problems is

briefly mentioned; energy spectrum, energy cascade, and length scales are introduced.

The importance of length scales in turbulent flow problems solved by modeling is ex-

plained, and case studies in the literature and studies on Taylor’s hypothesis used in

this solution are examined. As a result, the reasons for the need for QBT are also

stated. In Chapter 2, how to obtain the frequency-dependent spectrum with the spec-

tral approach and then how to get wavenumbers, so eddy sizes, by the mathematical

procedure of QBT are discussed. The content of Chapter 3 is the explanation of the

flow chart and subroutines of the implemented code. In Chapter 4, the experimental

setups of the analyzed experiments are introduced. In the last two chapters (Chap-

ters 5 and 6), results such as frequency-dependent spectrum, wavenumber-dependent
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spectrum, eddy sizes, and lifespans of some of the turbulent flow data cases are

shown. All findings are discussed in detail.
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CHAPTER 2

THEORY

2.1 Introduction

In this section, the theoretical foundations of the study are emphasized, and the math-

ematical procedure used is explained. First, QBT, which is an approach that this study

is based on, is concentrated. Then, it is shown how to obtain the frequency-dependent

energy spectrum by spectral study. Following the mathematical procedure of QBT

with obtained frequency-dependent energy spectrum, wavenumbers and other critical

results are obtained, and each step is explained in detail.

2.2 Quantic Behaviour of Turbulence

Quantic Behavior of Turbulence (QBT) is introduced by Çıray [69] for the first time,

and in that study, a new dispersion relation is defined as,

u =
dω

dk
, (2.1)

where u is fluctuation velocity, ω is the circular frequency that is defined as ω=2πf

and k is the wavenumber. Physically, this definition determines that the turbulence

energy is carried by "discrete material packages of finite lifespan" [70]. It means

that these packages emit energy signals in the waveform, and these energy signals

oscillate and change intermittently. In this way, the instantaneous fluctuation velocity

becomes the energy transport velocity (group velocity) of the package (eddy).

An eddy can be defined as a group of fluid particles that move together and conserve

the identity of the group for a while. Therefore, the motion of an eddy is the move-
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Figure 2.1: Representation of particle and wavy character of turbulence reproduced

from Figure 5 in [72]

ment of fluid particles which behave as a group. On the other hand, this motion which

borns and dies in time, t, is also the movement of the dispersive wave [72]. This def-

inition is represented in Fig. 2.1 where L is the specific length of both the wave and

the particle group (eddy). Consequently, the definition of the fluctuation velocity as

the group velocity is based on these dual characteristics of turbulence. This approach

forms the basis of QBT.

An essential aspect of this approach is that the own characteristics of turbulent flows

are also taken into account in the calculation of wavenumbers. The characteristic in-

formation of the flow is provided by the frequency-dependent energy spectrum func-

tion, G(f), which is the kinetic energy contribution of specified frequency interval

out of one, and it is obtained from the spectral study. This function can be defined as,

u′2 = u2 = u′2
∫ ∞

0

G(f)df, (2.2)

where u′ is root-mean-square (rms) of instantaneous velocity fluctuations and f is

frequency. Then, this relation can be written as,∫ ∞
0

G(f)df = 1. (2.3)

This spectrum function, G(f), carries the actual characteristics of the flow. There-

fore, it is crucial to get realistic results for the physics of the flow by this method.
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Another critical function used in QBT is the Probability Density Function (PDF) of

the fluctuation velocities. The PDF and the frequency-dependent energy spectrum

function are related as: ∫ ∞
−∞

P (x)u2 dx = u
′2

∫ ∞
0

G(f) df, (2.4)

where P (x) represents the PDF, x is non-dimensional instantaneous fluctuation ve-

locity. It can be shown how x is obtained as,

U = U + u = U

(
1 +

u

u′
u′

U

)
= U(1 + xI) = Uy, (2.5)

where U is instantaneous velocity, y is non-dimensional instantaneous velocity, U is

mean velocity and I is turbulence intensity. Also, x, y and I can be simply written

as,

x =
u

u′
, (2.6) y = 1 + xI =

U

U
, (2.7) I =

u′

U
. (2.8)

Eqn. 2.4 is represented in Fig. 2.2 and Fig. 2.3. The left-hand-side (LHS) of Eqn. 2.4

is shown in Fig. 2.2 where P (x) curve shows the probability of the existence of each

non-dimensional velocity x and P (x)u2 represents the kinetic energy contribution of

these velocities.

Figure 2.2: The representation of LHS of Eqn. 2.4 reproduced from LHS of Figure 6

in [72]

PDF is a chosen skewed function in the present study, and its details are explained

later. Besides, due to its skewness, the positive and negative velocity intervals have
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different probabilities. Nevertheless, these velocity intervals contribute to the kinetic

energy of the same frequency interval together, as shown in Fig. 2.3.

Figure 2.3: The representation of RHS of Eqn. 2.4 reproduced from RHS of Figure 6

in [72]

Therefore, the integral part at LHS of Eqn. 2.4 should be splitted,∫ −xi
−xi+1

P (x)u2 dx+

∫ xi+1

xi

P (x)u2 dx = u
′2

∫ fi+1

fi

G(f) df. (2.9)

In summary, two main equations need to be solved to calculate wavenumbers using

the QBT approach. First of all, using Eqn. 2.4, the relationship between fluctuation

velocities and frequency must be obtained; that is, u(f) must be found. Then, using

Eqn. 2.1, the wavenumbers should be calculated.

2.3 The Mathematical Procedure of the Study

As mentioned in the previous section, the basis of QBT consists of solving two main

equations (Eqns. 2.4 and 2.1). However, before solving these two equations, it is

necessary to find the energy spectrum in frequency domain, which has an important

contribution to this theory. First of all, two methods for finding this spectrum are dis-

cussed in this section. These are Discrete Fourier Transform (DFT) and Fast Fourier

Transform (FFT). Next, it is explained how the spectrum can be derived from DFT or

FFT results which are the Fourier coefficients.
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Once the frequency-dependent energy spectrum is obtained, the mathematical proce-

dure of QBT is passed. With this calculation method, first, the fluctuation velocities

depending on the frequency are found. Then, the calculation steps of wavenumbers

are shown.

2.3.1 Spectral Study

In this part of the chapter, the spectral approach in turbulent flows are discussed. With

this approach, kinetic energy contributions for each frequency are obtained, and thus,

the energy spectrum can be plotted in terms of frequency.

As the first step of this approach, it is assumed that the instantaneous velocity fluc-

tuations of turbulence are formed by overlapping an infinite number of sinusoidal

waves. This definition is expressed mathematically for homogeneous turbulence with

the Fourier integral as shown below [43]. Here, u(t) is assumed as the instantaneous

fluctuation velocity in the x-direction,

u(t) = 2π

∫ ∞
0

[a(η)cos(2πηt) + b(η)sin(2πηt)] dη , (2.10)

where η is the frequency, t is time and Fourier coefficients are

a(η) =
1

π

∫ ∞
−∞

u(t)cos(2πηt) dt , (2.11a)

b(η) =
1

π

∫ ∞
−∞

u(t)sin(2πηt) dt . (2.11b)

But, these equations are valid for the condition,∫ ∞
−∞
|u(t)| dt = finite . (2.12)

Considering the nature of turbulence, this condition is not possible since instanta-

neous velocity fluctuations are different from zero. To solve this problem, the bound-

aries of the integral are limited as −T and +T where T is period. Apart from this

time, instantaneous fluctuation velocities are assumed to be zero, and this is a physi-

cally correct assumption. Thus, it is ensured that the integral is finite. These expres-
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sions with assuming u(t) = 0 when t > T and t < −T are as follows,

a(η) =
1

π

∫ T

−T
u(t)cos(2πηt) dt , (2.13a)

b(η) =
1

π

∫ T

−T
u(t)sin(2πηt) dt . (2.13b)

In the next section, two methods for finding these coefficients with Fourier transform

are examined. After that, obtaining the energy spectrum in terms of frequency from

these coefficients are discussed.

2.3.1.1 Fourier Transforms

The purpose of the Fourier transform is to transfer the signal measured in the time

domain to the frequency domain. As mentioned in the previous section, this trans-

form is the expression of the signal with the Fourier series, that is, finding the Fourier

coefficients. If the signal is periodic and discrete, the Fourier integral in Eqn. 2.10

does not need to be written in continuous form. This signal can be written in a dis-

crete form which is the Discrete Fourier Transform (DFT) representation. In this

study, discretely sampled data is interested, and thus, there is no requirement for the

continuous form and solution for it.

In the analysis of a signal by Fourier Transform, one of the most important parameters

is the frequency limit which is decided by the Sampling Theorem. Let sampling in-

terval be ∆ and fc be a special frequency that is also called Nyquist critical frequency

[65], the relation of these two is,

fc =
1

2∆
. (2.14)

For instance, for experimental data measured at 10 kHz as a sampling rate, the sam-

pling interval is 10−4 s. Therefore, Nyquist critical frequency is found as 5 kHz.

Another important parameter of the discrete data ut is the sampling rate that is the

number of samples measured per second. Knowing this parameter allows finding the

time interval ∆ between two samples recorded as one divided by the sampling rate

[65].

Additionally, Eqn. 2.14 is defined for a continuous function. However, if there are

enough samples to represent a continuous equation, this relation can be applied to
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discrete sample data represented by ut. Before that, it should be checked whether the

Fourier Transform approaches zero at the negative and positive frequency limits. If it

is not, the frequency limit should be expanded.

In this study, the Fourier coefficients are needed to be found, and DFT is first used to

obtain these coefficients. Due to the long measurement times and the high sampling

rate, the number of instantaneous velocities measured by the experiment, namely the

number of samples, N , is very high. However, DFT requires operations in the order

ofO(N2) to calculate the Fourier coefficients ofN numbers of samples. It means that

a substantial computational effort is required for high N numbers. Therefore, algo-

rithms that reduce the number of operations are needed, and one of these algorithms,

Fast Fourier Transform, is chosen.

Fast Fourier Transform is an efficient algorithm introduced by Cooley and Tukey in

1965 and provides computing the DFT [19]. Instead of NxN arithmetic operations,

it can compute DFT with Nx log2N operations. This simplification makes the FFT

one of the widely used methods for calculating Fourier Transform [41].

Using FFT, an equation in the physical time domain is transformed into a different

representation of the same equation in the mathematical frequency domain. Although,

in reality, there is no possibility of existing negative frequency physically, the negative

frequencies exist in the frequency domain mathematically. Their energy contributions

are transferred to the positive frequencies corresponding to them. In this way, a one-

sided energy spectrum is obtained.

Table 2.1: Comparison of CPU for DFT and FFT [65]

# of Samples CPU of FFT CPU of DFT

106 30 seconds 2 weeks

This operation difference may be understood by comparing the CPU time of the ap-

plication of two methods. Press et al. give an example for 106 samples and roughly

estimate the CPU time as 30 seconds for FFT and 2 weeks for DFT on a microsecond

cycle time computer as can be seen from Table 2.1. Therefore, FFT is chosen to find
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Fourier coefficients in the present study.

As it can be understood from what has been explained so far, the DFT includes many

repetitive terms in the calculations. In the FFT, unnecessary process repetition is

prevented by realizing these terms, and the DFT is solved more efficiently. As a

result of this transform, Fourier coefficients can be obtained.

Consequently, in this study, Fourier coefficients are found by FFT, and the "fft"

command in Matlab is used for this process. The calculation procedure for DFT and

FFT is added to the thesis as Appendix A.1 and A.2.

2.3.1.2 The Derivation of the Energy Spectrum in Frequency Domain

Until this part, how to obtain Fourier coefficients by Fourier Transform has been

explained. Now, it is explained how to find the frequency-dependent energy spectrum

from these coefficients. Thus, the contribution of frequency ranges to kinetic energy

is found and used to obtain wavenumbers.

Assume that u is the x-component of the fluctuation velocity at a fixed point in the

flow field, which is statistically homogeneous with respect to time. In this case, the

mean value of the square of this velocity component can be considered as the sum of

the energy contributions at all frequencies [43].This definition can be mathematically

expressed as: ∫ ∞
0

E(η)dη = u2 , (2.15)

where η is frequency and E(η)dη is the kinetic energy contribution of the frequencies

between η and η + dη. This is Taylor’s 1-D spectrum as shown in Fig. 2.4 [16].

The largest eddies create velocity fluctuations of low frequencies, while the smallest

eddies create velocity fluctuations of high frequencies. When there is a frequency

range in the spectrum where the energy density E(η) is high, the kinetic energy con-

tribution of both ends of the spectrum is low. For very low frequencies, the energy is

caused by the change of mean flow with respect to time. For very high frequencies,

the noise generated by the measurement system is the cause of energy production.

Therefore, lowpass and highpass filters are used. These regions, which are fewer fre-
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Figure 2.4: Taylor’s 1-D energy spectrum reproduced from Figure XII. 12 in [16]

quencies than the η1 and higher frequencies than the η2, are not taken into account

and considered unmeaningful [16].

At this point, the required step is to express the energy spectrum function in terms of

Fourier coefficients. For this, the correlation function can be used because instanta-

neous fluctuation velocities are expressed in Fourier coefficients. Since the correlation

function also consists of the fluctuation velocities, this function can be expressed in

Fourier coefficients. G. I. Taylor is the first person to establish a relationship between

these two functions and express them mathematically. However, in this study, Hinze’s

work, which is different from Taylor’s, is used [43].

The correlation function, which measures the association of velocities in time at a

fixed point in space, is expressed as follows at the end of long derivation steps in

Hinze’s book [43]:

QE(t) =
4π2

2T + t

∫ ∞
0

a2(η) + b2(η)

2
cos(2πηt)dη , (2.16)

where QE is the correlation function [16]. Then, t = 0 is chosen and Eqn. 2.16

becomes,

u2(0) = π2

∫ ∞
0

a2(η) + b2(η)

T
dη . (2.17)

The LHS of the Eqn. 2.17 shows the kinetic energy contribution of the fluctuation

velocity in x-direction. Therefore, u2(0) = u2 can be written and Eqn. 2.17 becomes:
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u2 = π2

∫ ∞
0

a2(η) + b2(η)

T
dη =

∫ ∞
0

E(η)dη . (2.18)

As a result, the frequency-dependent spectrum from the Fourier coefficients is found

in this way. Thus, it is possible to start calculating the wavenumbers by using the

mathematical procedure of QBT.

2.3.2 The Energy Spectrum in Wavenumber through QBT

In this section, the details of the mathematical procedure of QBT are introduced.

The first main equation is the dispersion relation that relates the wavenumber and

frequency as given in Eqn. 2.1. The second main equation is used for the previous

step of the 2.1. To find the corresponding wavenumber, each fluctuation velocity and

frequency are required. The frequencies are obtained by the spectral analysis, and

corresponding fluctuation velocities can be found by the relation in Eqn. 2.4. In the

calculation of wavenumber, the characteristic information of the flow is required, and

this information is obtained by the spectral characteristics of the spectrum in equation

2.4.

2.3.2.1 Basic Definitions and Properties of PDF

In this section, some properties of PDF are introduced. Then, these properties are

used in the following steps [72],

∫ ∞
−∞

P (y) dy = 1 , (2.19a)

∫ ∞
−∞

P (x) dx =
1

I
, (2.19b)

∫ ∞
−∞

P (y)U dy = U , (2.19c)

∫ ∞
−∞

P (y)y dy = 1 . (2.19d)

One of the critical parameters of the PDF is the moment, and its mathematical defini-

tion is as follows:

µκ =
1

U
κ

∫ ∞
−∞

P (y)Uκdy . (2.20)

In this definition, µκ is the moment of degree κ of U . The first-order moment of U in
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Eqn. 2.19c can be obtained by Eqn. 2.20:∫ ∞
−∞

P (y)U dy =

∫ ∞
−∞

P (y)(U + u) dy = U

∫ ∞
−∞

P (y) dy +

∫ ∞
−∞

P (y)u dy = U .

This moment is equal to the average value, and also called as the expectation value in

statistics [90]. By using Eqn. 2.19c, a new property of PDF can be obtained as:

U +

∫ ∞
−∞

P (y)u dy = U →
∫ ∞
−∞

P (y)u dy = 0 . (2.21)

The quadratic moment of U is the variance. In another saying, it is a measure of how

much the data deviates from the mean value and how diverse it is. This moment is

also manipulated with the properties of the PDF:∫ ∞
−∞

P (y)U2 dy =

∫ ∞
−∞

P (y)(U+u)2 dy = U
2
∫ ∞
−∞

P (y) dy+

∫ ∞
−∞

P (y)u2 dy = U
2
+u′2,

As a result, the quadratic moment is obtained in terms of turbulence intensity as

follows:

µ2 = 1 + I2 . (2.22)

2.3.2.2 The Implementation of Properties of PDF

In this section, PDF is defined, and the parameters required for this function are in-

troduced.

PDF is the function showing the distribution of instantly measured fluctuation ve-

locities. The fact that this function expresses the experimental data realistically is

important in getting accurate results from QBT. For this purpose, an extended form

of Maxwell’s PDF is adapted by Çıray [69]. This modified equation is as follows:

P (y) = P (1)ynexp [An (1− yn)] . (2.23)

Also, it is adapted for y > 0. In this equation, A and P (1), which are unique to

each data case, are constants that depend on parameter n. This parameter n is also a

constant for each case and obtained by the relation between turbulence intensity and

quadratic moment given in Eqn. 2.22. Therefore, Eqn. 2.23 can be expressed again

as a function of y with constant values as:

P (y) = Cynexp (−Anyn) = Cϕ(y) , (2.24)
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where
C = P (1)exp(An) , (2.25a) ϕ(y) = ynexp (−Anyn) . (2.25b)

The derivations of all these parameters, which PDF depends on, are displayed se-

quentially.

2.3.2.3 Determination of P(1)

How to obtain the constant P (1) in the PDF equation is explained in this part. At

first, using the condition 2.19a, constant C can be written as:

C =
1∫∞

−∞ϕ(y) dy
. (2.26)

If this transformation, yn= q, is applied and the derivative of both sides of the equa-

tion is:

dy =
1

n

q
1
n

q
dq . (2.27)

Then, ϕ(y) function is implemented by this transformation,∫ ∞
−∞

ϕ(y) dy =

∫ ∞
−∞

ynexp (−Anyn) dy =

∫ ∞
−∞

qexp (−Anq) 1

n

q
1
n

q
dq .

Finally, it becomes: ∫ ∞
−∞

ϕ(y) dy =
1

n

∫ ∞
−∞

q
1
n exp (−Anq) dq . (2.28)

In the QBT approach, the similarity of this equation with the Gamma function in

Abramowitz’s book [2] is noticed [69]. As a result of this, the parameters in Eqn.

2.28 are associated with the variables in the Gamma function [72],

Γ(z) = kz
∫ ∞

0

tz−1exp (−kt) dt . (2.29)

The lower limits of the integrals of Eqn. 2.28 ve 2.29 are not the same. But PDF is

defined for y ≥ 0. Therefore, Eqn. 2.28 can be written as:∫ ∞
−∞

ϕ(y) dy =

∫ ∞
0

ϕ(y) dy . (2.30)

The table below shows which parameters in the Gamma function correspond to the

variables in Eqn. 2.28.
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Table 2.2: Transformation to find P (1)

Eqn. 2.29 Eqn. 2.28

t → q

k → An

z − 1 → 1
n

z → n+1
n

At the end of this transformation, Eqn. 2.28 is expressed in terms of the gamma

function, ∫ ∞
−∞

ϕ(y) dy =
1

n
A−(n+1)Γ

(
n+ 1

n

)
. (2.31)

Finally, C and P (1) are obtained by combining Eqn. 2.26 and Eqn. 2.25a:

C =
nAn+1

Γ
(
n+1
n

) , (2.32) P (1) =
nAn+1

Γ
(
n+1
n

)
exp(An)

. (2.33)

By substituting C and P (1) in the PDF, it can be written as:

P (y) =
nAn+1

Γ
(
n+1
n

)ynexp(−Anyn) . (2.34)

Additionally, PDF can be expressed as a function of x:

P (x) = I
nAn+1

Γ
(
n+1
n

)(1 + xI)nexp [−An(1 + xI)n] , (2.35)

where
y = 1 + Ix , IP (y) = P (x) .

2.3.2.4 Determination of A

Constant A can be obtained by substituting Eqn. 2.24 into condition in Eqn. 2.19d:

C

∫ ∞
−∞

ϕ(y)y dy = C

∫ ∞
−∞

yn+1exp (−Anyn) dy = 1 . (2.36)
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Then, the same transformation, which is yn = q, is applied as shown in Table 2.3,

C

∫ ∞
−∞

q
n+1
n exp (−Anq) 1

n

q
1
n

q
dq =

C

n

∫ ∞
−∞

q
2
n exp (−Anq) dq = 1 . (2.37)

Table 2.3: Transformation to find A

Eqn. 2.29 Eqn. 2.37

t → q

k → An

z − 1 → 2
n

z → n+2
n

By substituting C constant found in Eqn. 2.32, Eqn. 2.37 becomes as follows,

C
1

n
Γ

(
n+ 2

n

)
1

An+2
=

nAn+1

Γ
(
n+1
n

) 1

n
Γ

(
n+ 2

n

)
1

An+2
= 1 . (2.38)

Finally, A can be defined in terms of the Gamma function,

A =
Γ
(
n+2
n

)
Γ
(
n+1
n

) . (2.39)

2.3.2.5 Determination of µκ

PDF in Eqn. 2.24 is used in the moment definition given in Eqn. 2.20,

µκ =
1

U
κ

∫ ∞
−∞

P (y)Uκ dy =

∫ ∞
−∞

P (y)yκ dy = C

∫ ∞
−∞

ynexp (−Anyn) yκ dy .

Again, transforming yn = q and other parameters as shown in Table Eqn. 2.4, it

becomes:

µκ = C

∫ ∞
−∞

yn+κexp (−Anyn) dy =
C

n

∫ ∞
−∞

q
1+κ
n exp (−Anq) dq . (2.40)
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Table 2.4: Transformation to find the moments

Eqn. 2.29 Eqn. 2.40

t → q

k → An

z − 1 → 1+κ
n

z → n+κ+1
n

Writing the equation in terms of the Gamma function, the moment from the degree κ

can be written as:

µκ =
C

n
A−(n+κ+1)Γ

(
n+ κ+ 1

n

)
. (2.41)

Inserting A and C into this equation, µκ is obtained as only depending on n,

µκ =

[
Γ
(
n+1
n

)]κ−1
Γ
(
n+κ+1

n

)[
Γ
(
n+2
n

)]κ . (2.42)

In addition to all this, the second-order moment allows finding the number n. In this

case, the relation of this moment with turbulence intensity in Eqn. 2.22 as shown

below should be remembered,

µ2 = 1 + I2 =
Γ
(
n+1
n

)
Γ
(
n+3
n

)[
Γ
(
n+2
n

)]2 . (2.43)

Since the turbulence intensity is known by experimental data, the value of the second-

order moment is found. After that, Eqn. 2.42 is written for κ = 2, and the number n

that satisfies this moment value is obtained.

2.3.2.6 Discrete Form of Working Equations

Until here, it is shown how to obtain the PDF and the parameters it depends on. It is

also described how to find the energy spectrum function depending on the frequency

from the spectral study. Now, the calculation procedure from the governing equations

of QBT is explained.
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First of all, the relation between frequency and fluctuation velocities is found by the

first main equation of QBT as shown below,∫ ∞
−∞

P (x)u2 dy = u
′2

∫ ∞
0

G(f) df. (2.44)

Dividing the equation by u′2 and remembering the relation x = u/u′, it becomes,∫ ∞
−∞

P (x)x2 dx =

∫ ∞
0

G(f) df . (2.45)

As mentioned before, the probability of positive and negative velocities occurring in

flow is different. Therefore, the PDF is chosen to be skewed to suit the physics of the

situation. Therefore, LHS in Eqn. 2.45 should be written as:∫ −xi
−xi+1

PL(ξ)ξ2 dξ +

∫ xi+1

xi

PR(ξ)ξ2 dξ =

∫ fi+1

fi

G(η) dη . (2.46)

This representation shows the kinetic energy contribution to the specific frequency

band, which is between fi and fi+1. This contribution is transferred from the positive

and negative state of the same velocity interval to the same frequency range as a

contribution. Discrete form of this equation is as follows:

[
PL(−xi+1)(−xi+1)2 + PL(−xi)(−xi)2

] −xi+1 − (−xi)
2

+[
PR(xi+1)(xi+1)2 + PR(xi)(xi)

2
] xi+1 − xi

2
= ∆G(fi; fi+1) . (2.47)

After that, PR(xi+1) and PL(−xi+1) are expanded by the first-order Taylor Series

expansion,

xi+1 = xi + ∆xi+1 → PR(xi+1) = PR(xi) +
dPR(xi)

dx
∆xi+1 , (2.48)

−xi+1 = −xi−∆xi+1 → PL(−xi+1) = PL(−xi)−
dPL(−xi)

dx
∆xi+1 . (2.49)

Substituting the expanded forms of PR(xi+1) and PL(−xi+1) into Eqn. 2.47, the

obtained equation is:{[
PL(−xi)−

dPL(−xi)
dx

∆xi+1

]
(−xi −∆xi+1)2 + PL(−xi)(−xi)2

}
∆xi+1

2
+{[

PR(xi) +
dPR(xi)

dx
∆xi+1

]
(xi + ∆xi+1)2 + PR(xi)(xi)

2

}
∆xi+1

2
= ∆G(fi; fi+1).

(2.50)
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When the higher-order terms than the second degree are neglected, a quadratic equa-

tion is found as:

C1∆x2
i+1 + C2∆xi+1 = ∆G(fi; fi+1) , (2.51)

where

C1 = xi [PL(−xi) + PR(xi)] +
1

2
x2
i

[
dPL
dx

∣∣∣∣
−xi

+
dPR
dx

∣∣∣∣
xi

]
, (2.52)

C2 = x2
i [PL(−xi) + PR(xi)] . (2.53)

In other words, C1 and C2 values depending on the PDF itself and its derivatives,

are obtained in each calculation step. Afterward, ∆x value, which is the root of the

second-order equation, is found, and the frequency-dependent x value is obtained.

Finally, the only thing required to find frequency-dependent nondimensional fluc-

tuation velocities x is to start these calculations, i.e., their initial conditions. After

explaining how the calculations started, all the steps of finding these velocities are

explained. Then, the calculation of wavenumbers from these velocities is mentioned.

2.3.2.7 Initiation of Calculation of Working Equations

The initial conditions are:

x0 = 0→ PL(x = 0) = PR(x = 0) = P (y = 1) .

To find x1, Eqn. 2.46 is written as:∫ x1

0

2P (1)x2 dx = ∆G(0; 1) , (2.54)

where ∆G and P (1) are constant. It can also be represented like,

x1 =

(
3

2

∆G(0; 1)

P (1)

) 1
3

. (2.55)

The results are in a form:

x = x(f) .
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All x values are obtained by starting the equation with these initial conditions men-

tioned and following the steps in the previous title. Now, the step of finding wavenum-

bers can proceed. To find k1, the first main equation of QBT is used,

u =
dω

dk
.

The circular frequency can be written in terms of frequency such as ω = 2πf and the

definition of nondimensional fluctuation velocity x = u/u′ is recalled. The integra-

tion of dispersion relation becomes:

k =

∫ ω

0

dω

u
=

2π

u′

∫ f

0

df

x
. (2.56)

In ∆G calculation, the first frequency interval is taken between 0 and 1 Hz. Therefore,

the first wavenumber can be splitted from the integral as shown below,

k(f) =
2π

u′

(∫ 1

0

df

x
+

∫ f

1

df

x

)
= k(1) +

2π

u′

∫ f

1

df

x
. (2.57)

To find k(1), it can be written as,

x = xb

(
f

fb

)B
, (2.58)

whereB, xb and fb are defined by the first three combinations of x and f . Thus, using

the equation below, k(1) is calculated,

k(1) =
2π

u′
fBb
xb

∫ f1

0

df

fB
=

2π

u′

(
fb
f1

)B
f1

1−B
. (2.59)

Finally, by substituting k(1) in Eqn. 2.57, the final form of the equation to be used to

find the wavenumber is obtained,

k(fi) =
2π

u′

(
fb
f1

)B
f1

1−B
+

4π

u′

i∑
j=2

fj − fj−1

xj + xj−1

. (2.60)

This equation can be expressed in a simpler representation,

k(fi) =
2π

u′

[(
fb
f1

)B
f1

1−B
+ 2

i∑
j=2

fj − fj−1

xj + xj−1

]
. (2.61)
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The wavelength, L, and the phase velocity, c, can be calculated as,

L =
1

k
, (2.62) c =

ω

k
. (2.63)

In addition, the lifespan of eddies, tL, can be obtained by using:

tL =
L

u
=

L

xu′
. (2.64)
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CHAPTER 3

THE DEVELOPED COMPUTER CODE

3.1 Introduction

In this section, the code which is the implementation of QBT is described. The code

is written in Matlab. Firstly, the algorithm of the code is explained and shown by

the flow chart. Then, inputs and subroutines are mentioned. The parameters which

the defined functions need as the input and gives as the outputs are clarified. After

that, the code outcomes are provided, and finally, it is explained how the calculation

procedure of the code is verified.

3.2 Flow Chart

The code implemented in this study first obtains the spectrum in frequency domain

by spectral analysis from the instantaneous velocities measured by the experiment.

Then, it obtains the wavenumbers of the frequency ranges determined by the QBT

approach. By using wavenumbers, wavelengths, so eddy sizes, and phase velocities

are calculated.

The flow chart briefly shows the algorithm of the prepared code in Fig. 3.1. Firstly,

the instantaneous velocities measured by the experiments, U , the sampling rate, SR,

and duration of the experiment, T , are defined as the inputs. The code estimates the

instantaneous fluctuation velocities, u, rms of the fluctuations, u′, mean velocity, Um,

turbulence intensity, Iact, and 2nd order moment, µ2
act.
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 Inputs: U, SR, T

Obtain af and bf

by fft(u)

Calculate E(f) and f

Nondimensionalize E(f),
Calculate G(f), �G for

desired intervals

Initialize n,
 n = 1

Calculate µcalc
2, then Icalc

Error for Icalc

< 5%

Calculate µcalc
2, then Icalc

NO

YES

NO

YES

Calculate A, P(1)

n = n + 1

n = n + 10-5

Error for Icalc

< 10-3%

Initialize x

Calculate x(f), PL(x), PR(x), B

Initialize k

Calculate k(f), L(f), c(f)

Figure 3.1: Flow chart of the code
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As the next step, the fluctuation velocities are represented as the sum of the sine and

cosine functions. The coefficients of sine and cosine functions, that is, Fourier coef-

ficients, af and bf where f represents each frequency, are calculated by the "fft"

command of Matlab. These coefficients provide the frequency-dependent energy

spectrum, E(f). The non-dimensional form of this spectrum function is represented

by G(f), which can be found by dividing the square of rms of fluctuation velocities,

u′. Also, by finding the area under the G(f) curve, the kinetic energy contribution of

each frequency interval out of one, ∆G, is obtained.

With the knowledge of the kinetic energy contribution of the frequency intervals, ∆G,

rms of the fluctuations, u′, turbulence intensity, Iact, and 2nd order moment, µ2
act,

QBT can be applied to the test case. First of all, the number n should be determined

to specify PDF. In the process of finding this number, turbulence intensity, Iact, or

2nd order moment, µ2
act is used. By defining tolerance limits in two steps to reduce

the number of operations and make the code efficient, the number n, which satisfies

the Icalc accurately, is estimated. After that, other properties of PDF like A, P (1) are

calculated.

Until this point, frequency-dependent energy spectrum is found by the spectral study,

and PDF is specified by using turbulence intensity, Iact. Therefore, Eqn. 2.45 can be

solved for x(f). The solving process is started with Eqn. 2.55. The positive root of

the quadratic equation, ∆xi+1 in Eqn. 2.51 is calculated and the next x and corre-

sponding PL(x) and PR(x) are found. After that, the parameter B is calculated using

the first three combinations of x and f . It means that all values of these parameters are

obtained. Thus, it is passed to the next step, that is, the estimation of the wavenum-

bers. Eqn. 2.59 is used for the initialization of wavenumber calculation. Then, other

wavenumbers can be estimated by Eqn. 2.57. Finally, Eqn. 2.62 and 2.63 are used

for calculating wavelength, L and phase velocity, c.

3.3 The Details of the Code

In this section, the detail of the code is given. Primarily, the inputs of the code are

introduced. Then, subroutines are explained, such as functions, inputs, and outputs.
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After that, the desired results of the code are shown, and finally, it is explained how

the code is validated.

3.3.1 Inputs of the Code

The code is shown in Fig. 3.1 in a general form. But according to inputs, the running

parts of the code can be different. For instance, the instantaneous velocities, U , or

instantaneous fluctuation velocities, u, measured by the experiment can be defined

as the first input type. For this type, other required parameters are the sampling

rate, SR, and period, T . Another type is the non-dimensional frequency-dependent

energy spectrum, G(f) as an input. Some measurement systems can also obtain this

spectrum. If this spectrum is used as the input, the part of the code consisting of

the QBT procedure is used without the need for the spectral study. In addition, the

turbulence intensity, Iact, and rms of the fluctuation velocities, u′, are necessary to

define for the calculations.

Moreover, the code can be improved by adding the voltage transformation part to the

instantaneous velocity as the first step of the code. Therefore, measured voltage can

be input, and except for finding the instantaneous velocities, the entire procedure of

the calculations of the code remains the same.

3.3.2 Subroutines

In this part of the chapter, subroutines are clarified. After calling the inputs and cal-

culating the instantaneous fluctuation velocities, u, rms of the fluctuations, u′, mean

velocity, Um, turbulence intensity, Iact, and 2nd order moment, µ2
act, the code contin-

ues with the spectral study.

3.3.2.1 Subroutine dftfunction.m and fftfunction.m

This function finds the Fourier coefficients, af , and bf and only requires the instan-

taneous fluctuation velocities as the input. In the previous chapters, two methods for
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obtaining these coefficients are mentioned that are DFT and FFT. In this study, FFT

is decided for use. Here, the reason for this decision is explained first.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (10
-2

 s)
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Figure 3.2: DFT and FFT representations of the fluctuation velocities for 1000 sam-

ples

These methods represent the fluctuation velocities very accurately, as shown in Fig.

3.2. However, their required computational efforts are so different. Table 3.1 shows

the CPU times of the prepared DFT and FFT subroutines and how accurate these

subroutines calculate the Fourier coefficients. As can be seen, both methods give

very accurate results.

Table 3.1: Comparison of CPU for DFT and FFT

FFT DFT

# of Samples CPU (s) Error (%) CPU (s) Error (%)

10 1.010 0 1.013 4x10−14

100 1.012 3x10−14 1.020 2x10−12

1000 1.014 1x10−13 1.842 9x10−11

10000 1.015 1x10−13 799.9 5x10−10
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Nevertheless, the CPU time of DFT has increased significantly, with the N number

being 104. Therefore, the subroutine written for FFT is decided to be used for the

analyses.

Now, it is proceeded to how to calculate the Fourier coefficients of these two sub-

routines. Firstly, the DFT subroutine calculates the FN matrix which is composed of

power of WN given in Eqn. A.4. Then, the Fourier coefficients, af and bf , are ob-

tained by multiplying by the instantaneous fluctuation velocity matrix, ut, as shown

in Eqn. A.5. The real part of solution matrix is af , and the imaginary part is bf . For

FFT, af and bf are calculated directly with the "fft" command without the need for

these. Moreover, the code calculates instantaneous fluctuation velocities with inverse

transform. Thus, the error values in the Fourier representation are calculated as given

in Table 3.1.

3.3.2.2 Subroutine freqdspectrum.m

In this subroutine, the spectrum in the frequency domain is obtained from the Fourier

coefficients. First of all, Matlab’s "fft" command does not provide frequencies,

and the ordering of the Fourier coefficients is also different. The Fourier coeffi-

cients found with this command also include negative frequencies. Since negative

frequencies are not physically possible to exist, the energies of negative frequencies

are transferred to the positive frequencies with the same absolute number. This is

because some of the physically existing energy contributions are expressed mathe-

matically in negative frequencies. Thus, a one-sided spectrum is obtained from the

two-sided spectrum.

The frequencies at which the resulting Fourier coefficients coincide are primarily

from 0 to fc in hertz. Then, it goes from −fc to 0. Frequencies are also found as

follows:

f =
i

T
, i = 0, ....,

N

2
, (3.1)

where T is period and frequency interval is between 0 to fc which is defined as

Nyquist critical frequency in Eqn. 2.14. The Fourier coefficients obtained from

Matlab are different from those previously defined. Hence, the frequency-dependent

42



energy density equation is obtained as follows:

E(f) =
1

N

a2
f + b2

f

SR
, f = 0 ,

(3.2a)

E(f) =
1

N

2(a2
f + b2

f )

SR
, 0 < f ≤ fc .

(3.2b)

In this way, the energy contributions of negative frequencies are transferred to positive

frequencies. Since the energy contributions of the negative and positive values of the

same frequency are found to be the same, Eqn. 3.2b is only multiplied by 2. So, the

condition given in Eqn. 2.18 is satisfied as follows:

u2 =

∫ fc

0

E(f)df . (3.3)

It is checked whether this condition is met in the current subroutine. As it can be

noticed, the frequencies obtained depending on the sampling rate may not be integers.

In the current subroutine, these frequencies are generated as integers, and the energy

contributions of integer frequencies are transferred to integer frequencies. In other

words, the frequencies are expressed as integers, conserving the total energy for ease

of calculation.

3.3.2.3 Subroutine nondimfreqdspectrum.m

After obtaining the frequencies and the energy contributions of these frequencies in

the previous subroutine, the dimensionless form of the energy contributions must be

calculated to be used in the QBT approach. So, the energy density, E(f), is divided

by the square of rms of velocity fluctuations, u′2. As a result, the values of G(f),

which has the inverse unit of frequency but is called dimensionless, are calculated.

Multiplying G(f) by df gives ∆G, which expresses the dimensionless energy contri-

butions of the frequency ranges. The sum of the ∆G values of all frequency ranges

is 1. In other words, the ∆G value of any frequency range shows the contribution of

that frequency range to the turbulent kinetic energy over one.

Another task of the current subroutine is to arrange the ∆G and G(f) values ac-

cording to the frequency ranges determined in the QBT. The mentioned intervals are
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among the following frequencies in hertz units: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500,

1000, 2000, 5000, 10000. In the QBT studies of Çıray, who introduced the QBT

approach, the intervals are determined in this way, as shown in [69, 70, 72]. These

ranges are thought to be sufficient to give an accurate idea of the energy distributions

of the eddies. Of course, it is also possible to get different ranges by making a small

change in the code. As a result, this subroutine provides dimensionless kinetic energy

contributions of specified frequency ranges.

3.3.2.4 Subroutine ncalculation.m

In this part of the code, the unique number n is defined for each specific instantaneous

velocity data case. The first step in finding this number is to calculate the 2nd order

moment, µ2
act, from the actual turbulence intensity, Iact, calculated from the data,

as shown in Eqn. 2.22. The relationship of this moment with the Gamma function

depending on the number n is shown in Eqn. 2.43. Therefore, it is necessary to find a

value of n that allows this moment and hence the turbulence intensity to be calculated

as accurately as possible.

For this purpose, a loop that controls the margin of error using the number n from 1

to 250 is created. The maximum n number of 250 is determined by considering the

values obtained in the applications of this method. The number n is already inversely

proportional to the turbulence intensity. It means that the number n greater than 250

corresponds to very low turbulence intensity. The first loop contains the integer n

with less than a 5% margin of error that satisfies this case. Next, the fractional value

with a margin of error of less than 0.001% is found with a lower stepsize. Creating

two loops aims to reach n more efficiently by reducing the number of operations. So,

n is calculated. Turbulence intensity and second-order moment are also found using

calculated n.

3.3.2.5 Subroutine pdfxfcalculation.m

With the knowledge of the number of n, it is possible to find the properties of the

PDF. First of all, the number A is calculated by Eqn. 2.39; after finding A, P (1) is
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estimated by using Eqn. 2.33. As can be seen from Eqn. 2.35, by specifying these

parameters, the PDF becomes a function that depends only on the unknown x. Now,

x needs to be initialized before the calculation procedure of the PDF and x can begin.

Eqn. 2.55 is used for this process. As x1 also knows, the parameters C1 and C2 are

calculated. For this purpose, the values of the right and left sides of PDF and their

derivatives and x are used, as shown in Eqn. 2.52 and 2.53. Thus, Eqn. 2.51 becomes

a quadratic equation with one unknown, ∆x. By finding the positive root of this

equation, the ∆x is found. This stepsize is added to the current x, and the calculation

procedure is repeated in the same way for the entire determined frequencies. Thus, x,

PR, and PL corresponding to all determined frequencies are calculated. Finally, using

Eqn. 2.58, from the first three combinations of f and x, the number B is also defined.

3.3.2.6 Subroutine wavenumbercalculation.m

In this subroutine, the numbers xb and fb specified in Eqn. 2.58 are defined using the

first three combinations of f and x. Thus, wavenumber calculations can be started.

The k1 value is obtained using Eqn. 2.59 and, knowing the wavenumber, the wave-

length and phase velocity are calculated via Eqn. 2.62 and 2.63. In the continuation

of the calculations, by substituting x and f in Eqn. 2.61, wavenumbers corresponding

to entire frequencies are found in order.

3.3.3 Outputs of the Code

Until this part, the content of the code is explained, necessary inputs, calculation

steps, and subroutines are introduced. Although the outputs of the code are men-

tioned, it is useful to say it collectively:

• The energy contributions of the frequency ranges are obtained by applying the

spectral approach from the code.

• The dimensionless fluctuation velocities, x, depending on the frequencies and

the PDF values of these velocities, are calculated. Since the selected PDF is

known to be skewed, its right and left sides, PR and PL, are calculated sepa-
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rately.

• By obtaining the relation between frequency and fluctuation velocities, wavenum-

bers, wavelengths, and phase velocities are found for each selected frequency.

In Chapter 5, these outputs are shown.

3.3.4 Verification of the Calculation Procedure of the Code

As can be seen from the previous sections, this code contains many calculation steps.

These calculations are verified by comparing them with the calculations of 10 differ-

ent turbulent flow cases mentioned in Çıray’s first study on QBT [69]. Minor differ-

ences are observed in the results, and this difference is attributed to the calculation

conditions between then and now.
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CHAPTER 4

SETUP OF TWO EXPERIMENTS SELECTED FROM LITERATURE

4.1 Introduction

In this chapter, the properties of the experimental data to be analyzed by the devel-

oped code are introduced. All required information, such as specific test sections

of experiments and the conditions under which the experiments are carried out, are

given. The first data set that is analyzed belongs to the study of Dogan et al. [27] and

consists of several different boundary layer flow cases. The second data set used is

the atmospheric boundary layer data of Abdulrahim et al., and the analysis results are

explained in Chapter 5.

4.2 Experimental Setup and Detailed Information of Boundary Layer Data of

Dogan et al.

Dogan et al. performed experiments for 20 different freestream turbulence (FST)

cases generated by active grids and 1 case for no active grid used with zero pressure

gradient [27].
In this study, three of those cases are analyzed. Therefore, the details of these flow

cases are given. The cases are named differently from the referenced article, and

these names are given in Table 4.1. In addition, all cases of their experiments and

more detailed information can be found in this article.

Experimental measurements are conducted in a suction-type wind tunnel at the Uni-

versity of Southampton by Dogan et al. [27]. This wind tunnel has a 0.9 m wide

x 0.6 m high x 4.5 m long size test section. Over a 4.2 m long flat plate which is
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Table 4.1: The names of the different flow cases in this study, the corresponding

names in Dogan et al.’s study and the active grid type used

Present study Dogan et al. [27] Active grid

Case 0 No-FST Case No active grid

Case 1 FST-Case A Cut-out Wings

Case 2 FST-Case C Solid Wings

Figure 4.1: Schematic of test section of boundary layer experiment of Dogan et al.

[27] reproduced from their Fig. 1

0.135 m above the ground of the test section, the turbulent boundary layer is gener-

ated as shown in Fig. 4.1. The leading edge of the used flat plate is placed at 0.3 m

downstream of the test section entrance.

While there is no active grid used in Case 0 measurements, two different active grids

in Fig. 4.2 and 4.3 are used to generate turbulence for Case 1 and 2. The solid wings

used in Case 2 have higher solidity than cut-out wings used in Case 1. Therefore,

they create a higher turbulence intensity level. The length of the square mesh of both

active grids is 81 mm (M ).

Two hotwires are used for instantaneous velocity measurements. It is 43M away from

the entrance of the test section, where measurements are done. One of these hotwires

is fixed at 27 cm above the flat plate, and measures the instantaneous velocity in
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Figure 4.2: Cut-out wings used as active

grid in Case 1 [27]

Figure 4.3: Solid wings used as active

grid in Case 2 [27]

the freestream. Using the other hotwire, instantaneous velocities are measured at 28

different distances from the wall in the boundary layer. Measurement points are more

frequent near the wall and sparse for far from the wall.

Table 4.2: Some fluid and mean flow properties of cases

Case Fluid Density Dynamic Mean Reynolds

ρ viscosity, µ velocity, U number, Rex

- - [kg/m3] [kg/(m.s)] [m/s] -

Case 0 air 1.1654 1.8158x10−5 10.11 2.2x106

Case 1 air 1.1810 1.8249x10−5 6.11 1.5x106

Case 2 air 1.1970 1.8319x10−5 7.96 1.8x106

The airflow is measured in the experiments, and the fluid properties and mean velocity

of freestream for each case are given in Table 4.2.

The atmospheric pressure, patm, measured during the experiments are between 101-

103 kPa and the ambient temperature, Ta, is between 20-24oC. The sampling rate,

duration, and turbulence intensity levels for the three flow cases mentioned are given

in Table 4.3.
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Table 4.3: The sampling rates, durations of experiments, and turbulent intensity levels

of FST specific to each case

Case Sampling Rate, SR Duration, T Turbulence intensity, I

- [kHz] [s] [%]

Case 0 80 140 0.7

Case 1 20 360 7.4

Case 2 20 360 12.2

4.3 Experimental Setup and Detailed Information of Atmospheric Boundary

Layer Data of Abdulrahim et al.

Abdulrahim et al. conducted experiments to create an atmospheric boundary layer

(ABL) in the wind tunnel. While some of these experiments are included in their

paper [1], unpublished two cases are used in this study. In one of these cases, ABL is

generated using spires. These spires are triangular plates replaced at the entrance of

the test section. They provide to generate the windspeed profile of the boundary layer

[61].

Table 4.4: The names and characteristics of cases of Abdulrahim et al.

Present study Characteristic of case

Case 3 Boundary layer of empty test section

Case 4 Atmospheric boundary layer generated by spires

Abdulrahim et al. conducted these experiments in the open-return suction type wind

tunnel at Middle East Technical University Center for Wind Energy Research (METU-

RÜZGEM). The size of this wind tunnel is 1 m wide x 1 m high x 8 m long. The height

of spires is 0.67 m. The boundary layer is generated at the bottom of the test section.

Instantaneous velocities are measured 7 m downstream from the test section entrance

and at 175 different heights. These positions are at 2 mm intervals from the bottom of
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the test section at the height range of 0-25 cm and 5 mm intervals at the height range

of 25-50 cm.

Figure 4.4: Schematic of test section of atmospheric boundary layer experiment of

Abdulrahim et al. [1] reproduced from their Fig. 3 with minor modifications

Table 4.5: Some fluid and mean flow properties of cases

Case Fluid Density Dynamic Mean Reynolds

ρ viscosity, µ velocity, U number, Rex

- - [kg/m3] [kg/(m.s)] [m/s] -

Case 3 air 1.0633 1.9374x10−5 10.93 4.2x106

Case 4 air 1.0633 1.9374x10−5 10.93 4.2x106

Some fluid and freestream flow properties of cases of Abdulrahim et al. are given in

Table 4.5.

Table 4.6: The sampling rates, durations of experiments, and turbulent intensity levels

of FST specific to each case

Case Sampling Rate, SR Duration, T Turbulence intensity, I

- [kHz] [s] [%]

Case 3 10 60 0.5

Case 4 10 60 2.1
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The ambient temperature, Ta, measured during the experiments are between 21-22oC.

Other important parameters such as sampling rate, duration, and turbulence intensity

levels of the two cases are shown in Table 4.6.

In Chapter 5, the velocity profile specific to the boundary layer test cases, the selected

points for analysis, and the analysis results are discussed.
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CHAPTER 5

EVALUATION OF EXPERIMENTS WITH QBT APPROACH

5.1 Introduction

In this chapter, calculations either in tabular form or as figures are presented. The

calculations are made entirely with respect to QBT and associated mathematics. For

the calculations, raw data coming from measurements of the researchers are used.

The raw data is basically time series of measured instantaneous velocities. These

data are from Dogan et al. [27] and Abdulrahim et al. [1] and their contribution are

as raw data in figures and tables.

5.2 Results of Boundary Layer Data of Dogan et al.

In this study, three boundary layer data cases of Dogan et al. are analyzed. Detailed

information about these cases is explained in Chapter 4. As mentioned before, instan-

taneous velocities are measured both at the boundary layer and freestream in these

experiments. In this study, by QBT, the point where freestream velocity is reached in

the boundary layer is analyzed. It is observed that there is no significant difference

between this point and freestream. Therefore, it is decided that there is no need to

analyze the freestream, and analyzing mentioned points in boundary layer (D points

to be detailed later) are sufficient to obtain the results of the freestream.

In this section, selected points for analysis in the boundary layer and the velocity pro-

files of the cases are introduced. The PDF of the selected points and the compatibility

of the PDF to the data are evaluated. Afterwards, frequency-dependent spectrum,

spectrum in the wavenumber domain are shown and discussed. Finally, the eddy
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sizes and lifespans of all measurement points for three cases are compared.

5.2.1 Velocity Profiles and Measurement Points of Cases of Dogan et al.

The velocity profiles of Dogan et al.’s three cases in the boundary layer are shown in

Fig. 5.1. For analysis, four different points are selected on each profile. The selected

points can be classified as:

• A points are close to the wall and have high u′.

• B points are before the curved parts of the velocity profiles.

• C points are after the curved parts of the velocity profiles.

• D points are points where the velocities reach the freestream velocities.

In addition, the points selected for each case are chosen to reach approximately the

same percentage of their velocity profile. For example, points A have their freestream

velocity at the same percentage. It is decided in this way so that the comparison of

these points is meaningful.

In Table 5.1, 5.2, and 5.3, some information about the selected points such as mea-

surement location, y, mean velocity, Um, root mean square of velocity fluctuations,

u′, actual and calculated turbulence intensity, Iact, Icalc, and the determined number,

n is given for Case 0, 1, and 2, respectively. As previously stated in Chapter 3, in the

QBT approach, actual turbulence intensity is used to find the determined number n

for each case. Calculated turbulence intensity is found by using the number n. Both

parameters for each point are shown in the given tables. As seen from the tables, the

number n corresponds to smaller numbers for high turbulence intensities and higher

numbers for low turbulence intensities. When the actual and calculated turbulence

intensities are compared, it can be seen that the calculated turbulence intensity is

obtained correctly using the determined number n for each case.

An important point to remember is how turbulence is generated in these cases. Since

the active grid is not used in Case 0, turbulence intensities are lower than in other

cases, as shown in Table 5.1. Even at the freestream point (Point 0D), the turbulence
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intensity is 0.7%. In Case 1, cutout wings with lower solidity than solid wings are

used as an active grid. Therefore, intensities in Table 5.2 are higher than Case 0. In

Table 5.3, the highest intensities are observed in Case 2, where solid wings are used.

Table 5.1: Information about the selected measurement points of Case 0 (from raw data

of Dogan et al. [27])

Point y [cm] Um [m/s] u′ [cm/s] Iact [%] Icalc [%] n [-]

Point 0A 0.10 4.69 103 21.9 21.9 4.63

Point 0B 0.87 7.16 73.7 10.3 10.3 11.1

Point 0C 3.55 9.46 42.4 4.48 4.48 27.2

Point 0D 10.9 10.1 7.11 0.70 0.70 181

Table 5.2: Information about the selected measurement points of Case 1 (from raw data

of Dogan et al. [27])

Point y [cm] Um [m/s] u′ [cm/s] Iact [%] Icalc [%] n [-]

Point 1A 0.10 2.83 77.7 27.4 27.4 3.50

Point 1B 0.47 4.29 61.8 14.4 14.4 7.60

Point 1C 3.98 5.71 52.9 9.26 9.26 12.5

Point 1D 17.2 6.13 45.0 7.35 7.35 16.1

Table 5.3: Information about the selected measurement points of Case 2 (from raw data

of Dogan et al. [27])

Point y [cm] Um [m/s] u′ [cm/s] Iact [%] Icalc [%] n [-]

Point 2A 0.08 3.83 110 28.7 28.7 3.31

Point 2B 0.36 5.54 98.0 17.7 17.7 5.97

Point 2C 3.83 7.35 101 13.8 13.8 7.98

Point 2D 24.5 7.98 94.7 11.9 11.9 9.47
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Figure 5.1: Velocity profiles generated by Dogan et al.’s raw data and measurement

points (from raw data of Dogan et al. [27])

5.2.2 PDFs of Measurement Points of Cases of Dogan et al.

In the QBT approach, PDF is required to find wavenumbers corresponding to fre-

quencies. Chosen PDF depends on the number n. Therefore, with the knowledge n,
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it is obtained uniquely for each case. This section consists of PDFs of chosen points.

PDFs are plotted with the histograms to evaluate how accurately PDFs represent the

data of chosen points. For this purpose, histogram is plotted by dividing the number

of samples, N , to be able to compare with the chosen PDF. Also, stepsize of chosen

intervals of histogram columns is also taken into consideration.

Figure 5.2: Histogram vs PDF of measurement points of Case 0 (from raw data of Dogan

et al. [27])

By definition, PDF shows the possibilities of dimensionless fluctuation velocity ranges.

Therefore, the area under the PDF curve is one. On the other hand, the histogram

shows in columns how many samples are included in the velocity ranges determined

in the experimental data. For each selected point, the histogram values are divided by
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N . Thus, it is aimed to evaluate how accurately the PDF modified by Çıray represents

the experimental data.

The histogram and PDF of each point are given in Figs. 5.2, 5.3, and 5.4 for Case 0, 1,

and 2, respectively. From these figures, it can be observed that the histogram is wide

when the points are closer to the wall. When the point gets closer to the freestream,

the histogram becomes narrow. For all points, the distribution of velocity fluctuations

changes smoothly in given histograms. However, Point 0D has some irregularities.

The reason may be related to measurement mistakes or problems about reducing this

data from measurements of cross wire.

Figure 5.3: Histogram vs PDF of measurement points of Case 1 (from raw data of Dogan

et al. [27])

58



As can be seen from Figs. 5.2, 5.3, and 5.4, and Tables B.1 to B.12 at Appendix B,

the non-dimensional fluctuation velocities, x, increase when the eddy sizes and PDF

values reduce. Then, they become fixed at some frequencies. In other words, the

probability of the existence of these velocity fluctuations decreases at higher frequen-

cies. This is true for positive and negative fluctuations. Even though, the probabilities

of positive and negative velocity fluctuations are different due to the skewness of PDF;

their behavior is the same. Another observation is that PDF is almost symmetric and

wide for high-intensity points while it becomes more right-skewed for lower intensity

points.

When the compatibility of the experimental data with the PDF created with QBT

is compared, it is observed that they are quite compatible. For Case 0, at Points

0A and 0C, the PDF represents the data quite accurately. At Point 0B, there is a

slight mismatch. PDF of Point 0D is inconsistent with its histogram, and there is

an irregularity in the distribution of the experimental data that is not seen in other

data. This mismatch and irregular distribution may be due to errors in experimental

measurements.

In Cases 1 and 2, the PDF and histogram of Points 1A and 2A are obtained consis-

tently. As the point gets closer to the freestream, the inconsistent part occurs and

becomes more apparent. However, the level of incompatibility mentioned is still ac-

ceptable. So, the representation of the experimental data of the PDFs is still quite

adequate.

Moreover, a comparison of PDFs of similar points of each case is shown in Fig. 5.5.

The change of PDF is different for points A, B, C, and D. For instance, points A

have more similar PDFs than points B, C, and D. This is an expected result because A

points have high turbulence intensity in every case. PDF is the function of the number

n obtained based on the turbulence intensity. As the A points have n numbers close

to each other (Tables 5.1 to 5.3), their PDFs are also similar.
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For points B, C, and D, the similarities of the PDFs decrease as the points are far

from the wall due to different turbulence intensities. Another observation is that the

skewness of the PDF increases as the intensity decreases. Also, the peak of the PDF

rises with decreasing intensity. The probability density is concentrated at and around

the peak.

Figure 5.4: Histogram vs PDF of measurement points of Case 2 (from raw data of Dogan

et al. [27])
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Figure 5.5: PDFs of measurement points (from raw data of Dogan et al. [27])

5.2.3 Energy Spectrums in Frequency Domain of Measurement Points of Cases

of Dogan et al.

This section includes the frequency-dependent energy spectrums obtained by the

spectral approach. For all points, spectrums are shown in Fig. 5.6. In these plots,
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Gf (f) is the non-dimensionalized energy density function with respect to frequency.

According to the sampling theorem, Nyquist critical frequency (maximum frequency

at energy spectrum) is found using Eqn. 2.14. This frequency is half of the sampling

rate and corresponds to 40 kHz for Case 0 and 10 kHz for Case 1 and 2. As a result of

spectral analysis of Case 0, it is observed that the energy contribution of frequencies

higher than 10 kHz is less than 0.0001% of total kinetic energy. Therefore, the energy

contributions at a maximum of 10 kHz are considered. These contributions for all

chosen points are shown in Tables B.1 to B.12 at Appendix B.

Considering the energy contributions of the frequency intervals, it is observed that

about 90-95% of the energy is in 0-200 Hz range. As a result of this observation,

it is possible to say that large and energetic eddies are in the frequency range up to

200 Hz. In the frequency-dependent spectrum of the selected points in Fig. 5.6, the

spectrum function approaches zero from 200 Hz. It continues in the same way at high

frequencies.

At A, B and C points of Case 0, the energy levels are lower than those of Case 1 and

2. Since the active grid is not used in Case 0, the low energy level of turbulence is

consistent with the physics of the flows. However, this situation is different at Point

0D. Energy is concentrated at low frequencies, and it is very low at other frequencies.

The energy density of Case 2 is highest at points A and B. At C points, the energy

density of Case 1 is higher, while at points D, it is the same for Case 1 and 2.

At A, B and C points of Case 0, the energy levels are lower than those of Case 1 and

2. Since the active grid is not used in Case 0, the low energy level of turbulence is

consistent with the physics of the flows. However, this situation is different at Point

0D. Energy is concentrated at low frequencies, and it is very low at other frequencies.

The energy density of Case 2 is highest at points A and B. At C points, the energy

density of Case 1 is higher, while at points D, it is the same for Case 1 and 2.
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Figure 5.6: The energy spectra in the frequency domain of measurement points (from

raw data of Dogan et al. [27])
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5.2.4 Energy Spectrums in Wavenumber Domain of Measurement Points of

Cases of Dogan et al.

In this section, the energy spectrums in the wavenumber domain obtained by QBT are

examined. In turbulent flow studies about eddy sizes, the wavelengths (correspond to

wavenumbers) are associated with eddy sizes. Therefore, the energy contribution in

the frequency domain transforms to the wavenumber domain by the QBT approach.

Calculated wavenumbers represent the different ranges of eddy sizes. Large eddies

are strongly affected by the boundary conditions of flow, and they correspond to the

smaller wavenumbers. Fig. 5.7 consists of the spectrums in the wavenumber domain

of chosen points, and these spectrums have different characteristics in the region of

smaller wavenumber. In the inertial subrange, the slope of the spectrum is consistent

with the previous related studies in the literature. When the point gets closer to the

freestream, -5/3 slope region becomes broader and more apparent. The frequency

range of this region is observed at approximately between 50 and 500 Hz. As a

reference line for this range, the 200 Hz line is shown in each plot of Fig. 5.7. After

the inertial subrange, the region of dissipating eddies appears. In this range, the slope

of the curve changes, and energy is dissipated very rapidly. The behaviors of inertial

subrange and dissipating eddies range are compatible with the studies in the literature.

For all cases, when the point gets closer to the freestream, its spectrum curve ap-

proaches the spectrum of its freestream. Considering the spectrums of Case 2, it is

observed that the spectrum curves start from lower wavenumbers; that is, they contain

eddies of larger sizes. This is a correct conclusion because there is a more effective

source for turbulence generation in this case. In addition, this case has a higher energy

density for small wavenumbers, so, large eddies. In Case 2, high wavenumbers corre-

spond to lower energy levels than Cases 0 and 1. This situation differs in freestream

points. At Point 0D, the freestream point of Case 0 in Fig. 5.7d, most energy accu-

mulates in the large eddies. This is consistent with the frequency-dependent energy

distribution of this point. Likewise, this point has a relatively high energy contribu-

tion in the 2000-10000 Hz frequency range compared to the previous ranges. This

contribution shows itself with a slight increase in the last part of the curve. The spec-

trum of Point 0D is different from the others. The reason may be the irregularity in
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the distribution of data, as seen in its histogram in Fig. 5.4d.
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Figure 5.7: The wavenumber-dependent energy spectra of measurement points (red

dashed line: −5/3 slope, black dashed line: approximately 200 Hz for three cases)

(from raw data of Dogan et al. [27])
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5.2.5 Sizes and Lifespans of Measurement Points of Cases of Dogan et al.

In this section, the size and lifespans of eddies of the chosen points are discussed. In

Tables 5.4 to 5.7, sizes and lifespans of the largest eddies at 1 Hz and the smallest

eddies at 10000 Hz are given for all cases. As can be seen from the results, the

sizes of the largest eddies do not exceed the physical boundaries of the flow domain.

Therefore, obtained results are considered realistic.

Table 5.4: The size and lifespan of the largest and smallest eddies of A points (from

raw data of Dogan et al. [27])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 104 Hz) (at 1 Hz) (at 104 Hz)

POINT 0A 4.080 cm 33.60 µm 0.106 s 15.59 µs

POINT 1A 4.583 cm 25.77 µm 0.103 s 15.79 µs

POINT 2A 7.239 cm 36.88 µm 0.105 s 15.74 µs

Table 5.5: The size and lifespan of the largest and smallest eddies of B points (from

raw data of Dogan et al. [27])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 104 Hz) (at 1 Hz) (at 104 Hz)

POINT 0B 3.610 cm 25.34 µm 0.114 s 15.53 µs

POINT 1B 4.640 cm 21.67 µm 0.105 s 15.75 µs

POINT 2B 7.764 cm 34.12 µm 0.106 s 15.73 µs

The sizes of the largest eddies are in the order of cm, and they are the highest for

Case 2 and the lowest for Case 0. Also, it should be pointed out that those of Case

2 are also comparable values with the length of the square mesh of the active grid

(M = 8.1 cm). Another observation is that the largest eddies are near the wall except
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Table 5.6: The size and lifespan of the largest and smallest eddies of C points (from

raw data of Dogan et al. [27])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 104 Hz) (at 1 Hz) (at 104 Hz)

POINT 0C 2.800 cm 14.69 µm 0.136 s 15.49 µs

POINT 1C 4.522 cm 18.84 µm 0.102 s 15.83 µs

POINT 2C 8.626 cm 35.04 µm 0.104 s 15.82 µs

Table 5.7: The size and lifespan of the largest and smallest eddies of D points (from

raw data of Dogan et al. [27])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 104 Hz) (at 1 Hz) (at 104 Hz)

POINT 0D 1.658 cm 1.817 µm 0.154 s 15.91 µs

POINT 1D 3.627 cm 16.10 µm 0.103 s 15.83 µs

POINT 2D 8.130 cm 33.19 µm 0.109 s 15.81 µs

for Case 2 because velocity gradients are at the significant values there. Since solid

wings are used for turbulence generation in Case 2, the largest eddies are observed

in freestream. But still, the largest eddies near the wall in Case 2 have quite close

sizes with freestream sizes. Depending on the efficiency of the source for turbulence

generation, the sizes of eddies change. For instance, the sizes of Case 0 are the

smallest because there is no active grid used. The sizes are obtained larger for higher

solidity wings, Case 2 than Case 1. Even so, the sizes of the largest eddies for all

cases are comparable with the mesh size. The sizes of the smallest eddies are found

in the order of ten micrometers and similar to each other. However, the most apparent

difference is observed between Point 0D and others.
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Lifespans of the largest eddies are in the order of one-tenth of a second. Those of

the smallest eddies are in the order of ten microseconds. It is observed that lifespans

of both the largest eddies and smallest eddies are similar among themselves for all

cases.
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Figure 5.8: The size variation of eddies at different frequencies along the boundary

layer for all cases (from raw data of Dogan et al. [27])
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The change of size along boundary layer at different frequencies is shown in Fig. 5.8.

At small frequencies, large eddies are observed, and sizes are significant. Behaviors

of small frequency curves change irregularly. This is an expected result due to the

character of large eddies since they are highly influenced by boundary and initial

conditions. In this logarithmic scale, each frequency curve behaves similarly, but

they become smoother for higher frequencies. This statement is valid for each case

in itself. This smoother behavior confirms the universality of small eddies at higher

frequencies.

If three cases are compared, it is possible to say that the size curves have the same

behavior near the wall. In the region between the wall and freestream, the behaviors

are also similar for all three cases. However, at points close to the freestream, the

effect of the source of the freestream turbulence is noticeable. For example, in Case

0, in which no active grid is used, sizes in the freestream are considerably reduced

compared to those near the wall. This result is consistent with the low turbulence

intensity values around the freestream. The source in Case 1 is more effective than in

Case 0. In Case 1, sizes of the eddies close to freestream decrease a little, although not

as much as Case 0. This decrease is least in Case 2 because turbulence is generated

with solid wings. The turbulence intensities in the freestream are highest compared

to other cases. Therefore, larger eddies exist in the freestream of Case 2 than Case 0

and 1.

Lifespan curves in Fig. 5.9 can be evaluated similarly to size curves. It is irregular

at low frequencies for all cases and becomes smoother and universal as the frequency

increases. The effect of the source of turbulence generation is observed around the

freestream. Also, it is possible to say that the lifespan values at the same frequency

are of the same order.

The eddy sizes of the three cases at the same frequencies are shown in Fig. 5.10 for

a clear comparison. The irregularity of large eddies at 1 Hz is also more noticeable,

and as the frequency increases, they become smoother. For each frequency, the effect

of the freestream is also apparent specific to the cases.
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ary layer for all cases; (from raw data of Dogan et al. [27])
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Figure 5.10: Comparison of the size variation of eddies of all cases at different fre-

quencies along the boundary layer; (from raw data of Dogan et al. [27])
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Finally, there are Tables B.1 to B.12 at Appendix B from the results obtained from

the data of Dogan et al. These tables are specific to each of the selected points.

Each table first contains the mean velocity, U , rms of velocity fluctuations, u′, ac-

tual and calculated turbulent intensities, Iact and Icalc, and determined number n of

the measured point. Also, the probability at x = 0 obtained by Eqn. 2.33, P (1),

determined number B from frequency-fluctuation velocity relation in Eqn. 2.58 and

PDF constant A calculated using Eqn. 2.39 are added to these tables. Other results

are given with their corresponding frequencies. The non-dimensional kinetic energy

contribution of the selected frequency interval, ∆G, a value out of one is shown. Next

columns consists of the non-dimensional fluctuation velocities, x, wavenumbers, k,

wavelengths, L, probabilities of positive and negative fluctuations, PR(x) and PL(x)

of chosen frequencies.

5.3 Results of Boundary Layer Data of Abdulrahim et al.

In this section, the analysis results of two cases of the atmospheric boundary layer

data of Abdulrahim et al. are shown.

5.3.1 Velocity Profiles and Measurement Points of Cases of Abdulrahim et al.

The chosen points are decided in the same way as those of Dogan et al. data. How-

ever, in these velocity profiles, the measurement point closest to the wall has a higher

percentage of their freestream mean velocity than those of Dogan et al.’s cases. There-

fore, the points are not precisely at the same nondimensional location in the velocity

profile as in previous cases.

While Case 4 consists of atmospheric boundary layer measurements generated by

spires in the wind tunnel, Case 3 is the empty test section version of the same con-

ditions without spires, as mentioned in Chapter 4. Similar to those of Dogan et al.’s

cases in Tables 5.1 to 5.3, some information about chosen points is given in Table

5.8 and 5.9 for Case 3 and 4, respectively. Also, selected points are shown on their

velocity profiles in Fig. 5.11.
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Table 5.8: Information about measurement points of Abdulrahim et al.-Case 3 (from

raw data of Abdulrahim et al. [1])

Point y [cm] Um [m/s] u′ [cm/s] Iact [%] Icalc [%] n [-]

Point 3A 0.20 7.17 94.6 13.2 13.2 8.39

Point 3B 4.00 9.56 66.6 6.97 6.97 17.0

Point 3C 20.0 11.0 6.11 0.55 0.55 230

Point 3D 50.0 10.9 5.69 0.52 0.52 245

Table 5.9: Information about measurement points of Abdulrahim et al.-Case 4 (from

raw data of Abdulrahim et al. [1])

Point y [cm] Um [m/s] u′ [cm/s] Iact [%] Icalc [%] n [-]

Point 4A 0.20 6.78 94.0 13.9 13.9 7.93

Point 4B 4.00 8.42 80.7 9.59 9.59 12.0

Point 4C 20.0 9.67 68.1 7.11 7.11 16.6

Point 4D 50.0 10.9 23.1 2.11 2.11 59.4
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Figure 5.11: Velocity profiles generated by Abdulrahim et al.’s row data and mea-

surement points (from raw data of Abdulrahim et al. [1])
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5.3.2 PDFs of Measurement Points of Cases of Abdulrahim et al.

In this section, the compatibility of histograms and scaled PDFs of Case 3 and 4 is

examined. Also, the variation of the PDF is discussed.

Figure 5.12: Histogram vs PDF of measurement points of Case 3 (from raw data of

Abdulrahim et al. [1])

First of all, the histograms of the selected points are examined. Then, the general

behavior of the distributions of Case 3 and 4 is found similar to those of Dogan et al.’s

cases. However, when this general distribution is analyzed closely, the irregularities

become noticeable. The reason for this may be related to the difference in sampling
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rates and durations of experiments. Cases of Abdulrahim et al. are measured at a

lower sampling rate and in a shorter time. Therefore, histograms of Abdulrahim et

al.’s cases are less fulfilled.

Figure 5.13: Histogram vs PDF of measurement points of Case 4 (from raw data of

Abdulrahim et al. [1])

The width of histograms of Case 3 and 4 is larger at closer points to the wall, as

shown in Fig. 5.12 and 5.13. From A points to D points, they become narrower

and more right-skewed. Again, the compatibility of PDFs and histograms changes

from A points to D points. The gap in negative fluctuation velocities becomes more

significant at C and D points than at A and B points. It is seen that this inconsistency

is more for Case 4 than for Case 3. But, it is still possible to interpret that the PDFs
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accurately represent the distributions of fluctuation velocities for all points of the two

cases. In addition, the histogram of Point 4D is generated at wider intervals, as the

data becomes discrete when the same intervals as other points are taken.
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Figure 5.14: PDFs of measurement points (from raw data of Abdulrahim et al. [1])

In Fig. 5.14, the PDFs of similar points are compared. A points have almost the
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same turbulence intensity levels. So, their n numbers are close, and PDFs are almost

identical as in Fig. 5.14a. The gap becomes more significant when the difference is

more apparent on n numbers, as seen in Fig. 5.14b and 5.14c. Although, the number

n is so different in D points; PDFs look similar in Fig. 5.14d. When the number n

increases too much, its effect on the change of the PDF decreases. So, although the

n difference is substantial for the D points, the PDF curves are pretty close to each

other. It is also seen that as the intensity decreases, the peak point of the curve rises,

and the curve becomes more right-skewed than higher intensity points.

5.3.3 Energy Spectrums in Frequency Domain of Measurement Points of Cases

of Abdulrahim et al.

For Case 3 and 4, the maximum frequency in the energy spectrum is found 5 kHz

due to a sampling rate of 10 kHz. At higher frequencies than 200 Hz, the energy

contribution is so small. Therefore, the range of spectrums in the frequency domain

is limited to approximately 0-200 Hz, as shown in Fig. 5.15. The area under this

curve is non-dimensional energy contribution, ∆G, and shown for selected frequency

intervals in Tables Tables C.1 to C.8 at Appendix C.

In the same way as Doğan et al.’s cases, the energy is concentrated between 0-200 Hz.

Around 200 Hz, the curves get pretty close to zero. Therefore, large and energetic

eddies can be considered to be in this frequency range.

The frequency-dependent energy spectrums of similar points of Case 3 and 4 are

also given in Fig. 5.15. When the A points are examined, it is seen that the energy

contribution of Case 4 is quite intense at very low frequencies. Case 4 has spires

for the creation of the atmospheric boundary layer. Therefore, the largest eddies

contain more energy than those of Case 3. This is valid for points A, B, and C, as

seen from Fig. 5.15a, 5.15b and 5.15c. The situation differs only at D points in

Fig. 5.15d. The experiments of Case 3 are performed in the empty test section. The

energy contribution of its large eddies at the freestream point is considerably higher

than in Case 4. This result is similar in comparison to Dogan et al.’s D points. In the

canonical case, Case 0, energy is accumulated at very small frequencies, as observed

in Fig. 5.6d.
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Figure 5.15: The energy spectra in the frequency domain of measurement points (from

raw data of Abdulrahim et al. [1])
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5.3.4 Energy Spectrums in Wavenumber Domain of Measurement Points of

Cases of Abdulrahim et al.
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Figure 5.16: The wavenumber-dependent energy spectra of measurement points (red

dashed line: −5/3 slope, black dashed line: approximately 200 Hz for specified

cases) (from raw data of Abdulrahim et al. [1])
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Fig. 5.16 shows the wavenumber-dependent energy spectrum of each selected point.

In the same way as the previous figures, similar points are formed together so that

they can be compared.

Small wavenumbers correspond to large eddies. In these wavenumbers, the difference

of flow conditions shows their characteristics, and energy spectrums curves behave

differently. The energy density is higher at closer points to the wall for both cases. It

decreases from A points to D points. The variation of large eddies part of the spectrum

is different for Case 3. The turbulence intensity in Point 4D is very small, 0.52% as

shown in Table 5.8. Therefore, the spectrum loses curvy part and becomes almost a

straight line, as seen from Fig. 5.16d.

For all points, -5/3 slope in inertial subrange is obtained. This subrange is approxi-

mately observed between 50 and 500 Hz. In all points of previous cases and A and B

points in these cases, the corresponding wavenumbers to 200 Hz are found close. But

in C and D points, they are different. In these points of Case 3, the -5/3 slope ends

at 200 Hz, as shown in Fig. 5.16c and 5.16d. After the inertial subrange, the range

of dissipating eddies starts. However, the behavior of this range varies in Points 3C

and 3D. Even so, these parts of their spectrum curves change with different slopes;

dissipation happens quickly as other curves.

5.3.5 Sizes and Lifespans of Measurement Points of Cases of Abdulrahim et al.

The sizes and lifespans of eddies are the focus of this section. Firstly, the sizes and

lifespans of the largest and smallest eddies are given in Tables Tables 5.10 to 5.13.

The sizes of the largest eddies do not exceed the physical boundaries of the flow

domain for all cases. The sizes of the largest eddies are in the order of cm. They are

found highest near the wall due to significant velocity gradients. They decrease away

from the wall. Case 4 has larger eddies than Case 3 because it has an effective source

for generating large eddies, that is, spires. In addition, the size of the smallest eddies

is obtained in the order of a micrometer.
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Table 5.10: The size and lifespan of the largest and smallest eddies of A points (from

raw data of Abdulrahim et al. [1])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 5x103 Hz) (at 1 Hz) (at 5x103 Hz)

POINT 3A 4.998 cm 64.67 µm 0.108 s 30.54 µs

POINT 4A 7.859 cm 65.76 µm 0.109 s 31.00 µs

Table 5.11: The size and lifespan of the largest and smallest eddies of B points (from

raw data of Abdulrahim et al. [1])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 5x103 Hz) (at 1 Hz) (at 5x103 Hz)

POINT 3B 3.476 cm 46.43 µm 0.112 s 30.64 µs

POINT 4B 7.596 cm 57.37 µm 0.108 s 31.37 µs

Table 5.12: The size and lifespan of the largest and smallest eddies of C points (from

raw data of Abdulrahim et al. [1])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 5x103 Hz) (at 1 Hz) (at 5x103 Hz)

POINT 3C 0.468 cm 5.110 µm 0.128 s 28.80 µs

POINT 4C 5.738 cm 48.79 µm 0.108 s 31.35 µs

Lifespans of the largest eddies are found in the order of one-tenth of a second. This

result is similar to those of Dogan et al.’s cases. The smallest eddies have a lifespan

in the order of ten microseconds.
The variation of eddy sizes along the boundary layer is presented at different frequen-

cies for two cases in Fig. 5.17. Since large eddies correspond to small frequencies,

the curves change apparently at 1 Hz. By increasing frequency, the change decreases,
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Table 5.13: The size and lifespan of the largest and smallest eddies of D points (from

raw data of Abdulrahim et al. [1])

Measurement Size of the Size of the Lifespan of the Lifespan of the

Point Largest Eddy Smallest Eddy Largest Eddy Smallest Eddy

- (at 1 Hz) (at 5x103 Hz) (at 1 Hz) (at 5x103 Hz)

POINT 3D 0.819 cm 4.274 µm 0.141 s 28.66 µs

POINT 4D 1.118 cm 16.97 µm 0.091 s 30.85 µs
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Figure 5.17: The size variation of eddies at different frequencies along the boundary

layer (from raw data of Abdulrahim et al. [1])

and the curve becomes smoother than those of smaller frequencies. Considering the

size curves of Case 3 and 4, it is possible to say that the curves of the same frequen-

cies are at similar size levels. It can be observed that as the frequency decreases, the

order difference increases. This observation is consistent with the physics of large

eddies.

Size curves for Case 3 and 4 begin to behave differently as approaching freestream

in Fig. 5.17. In Case 3, measured at the empty test section, the intensities reach
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Figure 5.18: The size variation of eddies at different frequencies along the boundary

layer (from raw data of Abdulrahim et al. [1])

very low values at lower y-locations than Case 4. Therefore, the size of the eddies

decreases in these parts and continues in this way. In Case 4, the situation is different.

Intensities are higher than in Case 3. So, a tendency to decreasing is observed towards

freestream. The different behavior that occurs depending on the character of the flow

in the size curves in the freestream region is also noticeable in Dogan et al.’s cases.

However, there is a curved part near the wall in these curves, as shown in Fig. 5.8.

This part is not observed in the results of Abdulrahim et al. Since measurements are

not performed at locations very close to the wall in their case, comparing with Dogan

et al.’s cases. It is estimated that the size curves of the eddies of Abdulrahim et al.’s

cases near the wall are curved like those of Dogan et al. Because the parts of the

curves up to the freestream are similar.

Lifespan variation along with the boundary layer for both cases is shown in Fig. 5.18.

Like the size graphs, the change in the curves is more apparent for lower frequencies.

With increasing frequency, curves become smoother. The order of lifespans is similar

at the same frequency for both cases. In addition, the difference at the freestream

region is observed. For Case 3, the lifespans of those regions decrease. This fall is

more noticeable for large eddies than smaller ones.
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Figure 5.19: Comparison of the size variation of eddies of cases at different frequen-

cies along the boundary layer (from raw data of Abdulrahim et al. [1])
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For a clear comparison, eddy sizes of two cases are plotted depending on y-location

at some frequencies in Fig. 5.19 The variation of sizes at low frequencies is quite

evident. It is clearer from this figure that curves become smoother as the frequency

increases. Additionally, closer to the freestream, the differentiation of sizes for these

cases is observed clearly.

Furthermore, the results of chosen points of Abdulrahim et al. are included in Ta-

bles C.1 to C.8 at Appendix C.
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CHAPTER 6

CONCLUSIONS

Today, turbulent flow problems are generally solved using turbulence models to find

Reynolds stress terms in RANS equations. There is no single model that can be

applied to every turbulent flow problem, and several models are used for similar flow

cases by correcting some constants. This correction is needed because turbulence

physics, especially large eddies, which are heavily influenced by initial and boundary

conditions, are not sufficiently known. In this way, the lack of knowledge is tried to

be eliminated. Therefore, knowledge about eddies such as energy contents, sizes, and

lifespans is required for improving turbulent flow solutions.

In turbulent flow studies, the wavenumber is associated with the eddy sizes. The def-

inition of wavenumber based on Taylor’s frozen turbulence hypothesis is frequently

used in literature. However, many studies find out the circumstances that this hypoth-

esis is not applicable. These circumstances may be exampled with the cases with high

turbulent intensity or where it is not appropriate to use a single convective velocity

such as wall-bounded flows or applied to a large-scale turbulent structure. The reason

is that only mean velocity is considered in this approach. The physical conditions

such as flow type, dimension or region, and spectral information of the flow are not

included in this calculation. It gives the same result for all flows with the same mean

velocity. This approach is not a proper understanding of the physics of turbulence.

Therefore, an alternative approach is required.

Çıray proposed QBT as an alternative method to Taylor’s hypothesis in 1980 [69].

In his dispersion relation, fluctuation velocity is defined as energy transport velocity

(group velocity) of discrete material package [70]. The definition is based on the

quantum theory approach that the group velocity of the wave packet is the same as
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the translational velocity of the particle. In addition, this theory is defined for 1-D

flow and incompressible fluid [71].

In the present study, the QBT approach is implemented to a Matlab code. In order to

calculate wavenumbers with the QBT approach, the frequency-dependent energy dis-

tribution of the flow is needed. This distribution is obtained by the spectral approach.

In the generated code, FFT is applied using the function of Matlab. After the spectral

approach, the code is generated by following the mathematical procedure of QBT.

Implementation of method is tested and verified using the data of test cases published

in 1980 [69]. After completing the code, different turbulent flow cases are analyzed

using it.

Firstly, the three cases of Dogan et al.’s boundary layer data are analyzed. These

cases can be classified with the usage and types of the active grid as no active grid

(Case 0), cut-out wings (Case 1), and solid wings (Case 2) [27]. In their experiments,

the instantaneous velocities are measured using hotwires at different points on the

boundary layer and a fixed point on the freestream. For each case, the analysis re-

sults of the freestream points and the farthest points from the wall in the boundary

layer (Points D) are compared, and no difference is observed. Therefore, the results

of Points D are considered sufficient to obtain information about freestream. Then,

four points for each profile are chosen considering critical regions on the profile and

paying attention to similar regions for all cases. The PDFs of the selected points

are discussed. In these PDFs, it is observed that higher fluctuation velocities are re-

lated to higher wavenumbers, and at some point, fluctuation velocity becomes a fixed

value. It means that the probability of the existence of these high frequencies and

high amplitude is very low. In addition, PDF and distribution of experimental data

are compared. For A points, both are very compatible for three cases. However, for

other points, some inconsistency is noticed. The reason may be that the flow did not

reach a fully developed condition yet; that is, it did not lose its unsteady character.

Therefore, it may be useful to repeat and compare experiments on a section further

away from the measurement section. Another solution may be to choose different

PDFs for boundary layer flows to represent data more accurately. However, the se-

lected PDF is considered to adequately represent the experimental data.
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The energy spectrum in the frequency domain obtained by the spectral approach is

analyzed. For all points of all cases, 90-95% of kinetic energy contribution exists in

the frequency interval from 0 to 200 Hz. After 200 Hz, energy contribution decreases,

and at high frequencies, it reaches almost zero. Then, the wavenumber-dependent

energy spectrum for each chosen point is discussed. Entire regions of this spectrum

can be obtained by using QBT, especially regions of large eddies. The slope of -5/3 in

the inertial subrange is observed in the spectrums of all points, as can be seen in Figs.

5.7 and 5.16. This slope is proof that the obtained spectrums are quite compatible

with the literature. In dissipating eddies, the slope changes, and energy dissipates

very quickly conforming to previous related studies.

The sizes and lifespans of eddies are included. As a result, it is observed that the

largest wavelengths do not exceed the boundaries of the physical domain. That con-

forms with the physics of the flow. Except for Case 2, the largest eddies are found near

the wall due to more significant velocity gradients. In Case 2, there is a strong source

for turbulence generation. Therefore, the largest eddies are obtained in freestream.

But sizes of eddies are still found to be quite large near the wall. It should be pointed

out that sizes of the largest eddies are found to be quite close with the mesh size of

the active grids as 8.1 cm, in Case 2. For Case 0 and 1, these sizes are smaller than

those in Case 2, as the source of turbulence generation is less effective in Case 0 and

1. But sizes are still comparable with mesh size. The smallest eddies have sizes in the

order of ten micrometers. Also, the lifespans of the largest eddies are in the order of

0.11 seconds. Those of the smallest eddies are found in the order of 16 microseconds.

All mentioned results are included in this study in Tables B.1 to B.12 at Appendix B.

Secondly, two cases of atmospheric boundary layer data of Abdulrahim et al. are

examined. The instantaneous velocities are measured at the empty test section (Case

3) and test section with spires (Case 4). The points are chosen at the same heights for

both cases. The PDF and histogram of each point are found quite compatible. But

their unconformity is observed in negative velocity fluctuations for all points. There-

fore, choosing a PDF with a fuller left side may provide almost perfect compatibility

for two cases.

In the frequency-dependent energy spectrum of these points, the energy is accumu-
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lated between 0 and 200 Hz. Case 4 has a higher energy contribution in large eddies

for points A, B, and C; it is smaller for points D. This behavior is similar to Dogan et

al.’s cases. The reference case has a significant energy contribution at freestream for

very small frequencies.

The spectrums in the wavenumber domain are also shown in the results. In the large

eddies region, flow-dependent behavior is observed. -5/3 slope is consistently found

in the inertial subrange. After this region, dissipating eddies occur with a rapid dissi-

pation at high wavenumbers.

The sizes and lifespans of eddies are also added. The largest eddies are found with

size in centimeter order and lifespan in one-tenth of a second. The smallest eddies are

in the microlevel of these orders. On a logarithmic scale, the sizes and lifespans for

different frequencies are discussed. The difference in flow conditions is noticed in the

freestream region. But in the previous regions, behavior is found similar. The curvy

parts near the wall of size plots of Dogan et al.’s cases do not exist in Abdulrahim et

al.’s cases. Because the measurements of this region are not included in their data.

Also, the irregularity of size and lifespan curves at low frequencies and becoming

smoother at higher frequencies are consistent with the physics of eddies.

To sum up, this study tries to obtain information about eddies using spectral analysis

and QBT for different flow conditions. The frequency-dependent energy spectrum is

obtained in accordance with the work of Gabry et al. [29]. Experimental data are

represented quite accurately by PDF defined in QBT and included in the calculations.

The energy spectrum in the wavenumber domain is consistent with the spectrums of

different experiments given in Fig. 1.2 and the physics of turbulence. But eddy sizes

are smaller than those calculated by some of the integral scale definitions and Taylor’s

microscale and Kolmogorov scale calculated based on Taylor’s hypothesis, as can be

seen in Dogan et al.’s study [27]. However, the obtained sizes are consistent with

the definition of Roach [76], as shown in Gabry et al.’s NASA report [29]. With the

results mentioned, this study aims to understand turbulent flow problems in a more

appropriate way to physics.
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APPENDIX A

FOURIER TRANSFORMS

A.1 Discrete Fourier Transform

Suppose that N is the number of discrete data and Uη is the complex number that

includes the Fourier coefficients, a real number aη and a complex number bη, defined

as Uη = aη + bη. Then, Fourier coefficients can be shown as [80],

Uη =
N−1∑
t=0

utW
ηt
N , η = 0, 1, ...., N − 1 , (A.1)

where

fη =
η

N∆
, η = −N

2
, ....,

N

2
, (A.2)

WN = e−2πi/N = cos

(
2π

N

)
− isin

(
2π

N

)
. (A.3)

All coefficients can be written in matrix form,



Uη=0

Uη=1

Uη=2

.

.

.

Uη=N−1


=



1 1 1 ... 1

1 W 1
N W 2

N ... WN−1
N

1 W 2
N W 4

N ... W
2(N−1)
N

. . . ... .

. . . ... .

. . . ... .

1 WN−1
N W

2(N−1)
N ... W

(N−1)(N−1)
N


.



ut=0

ut=1

ut=2

.

.

.

ut=N−1


. (A.4)
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Also, it can be represented as:

Uη = FN .ut , (A.5)

where FN is the NxN DFT matrix that is called a Vandermonde matrix in linear

algebra. Solving A.4 provides Uη matrix, and Fourier coefficients can be obtained.

However, obtaining this solution by direct matrix multiplication requiresO(N2) arith-

metic operations as can be seen from,

N.N +N(N − 1) = 2N2 −N ≡ O(N2) . (A.6)

A.2 Fast Fourier Transform

Now, the FFT algorithm scheme will be explained [66]. The procedure starts with the

DFT formula, which is Eqn. A.1. This equation is split into two parts for even and

odd η values,

Uη =

N
2
−1∑

t=0

u2tW
η(2t)
N +

N
2
−1∑

t=0

u2t+1W
η(2t+1)
N . (A.7)

Then, WN = e−2πi/N is substituted into this equation,

Uη =

N
2
−1∑

t=0

u2te
− 2πi

N
η(2t) +

N
2
−1∑

t=0

u2t+1e
− 2πi

N
η(2t+1) . (A.8)

Second term can be written as,

Uη =

N
2
−1∑

t=0

u2te
− 2πi
N/2

ηt + e−
2πi
N
η

N
2
−1∑

t=0

u2t+1e
− 2πi
N/2

ηt . (A.9)

Finally, it becomes,

Uη = Aη +W η
NBη , (A.10)

where Aη and Bη are defined as:
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Aη =

N
2
−1∑

t=0

u2te
− 2πi
N/2

ηt , (A.11a) Bη =

N
2
−1∑

t=0

u2t+1e
− 2πi
N/2

ηt . (A.11b)

Here, Aη and Bη are also two different DFT’s whose lengths are N/2. While Aη

includes even η numbers of samples such as ut=0, ut=2,.., ut=N−2, Bη involves odd η

numbers of samples which are ut=1, ut=3,.., ut=N−1. Again, DFT is periodic in the

frequency domain. Therefore, N/2 is period.

Eqn. A.9 is arranged for η +N/2,

Uη+N
2

=

N
2
−1∑

t=0

u2te
− 2πi
N/2(η+N

2 )t + e−
2πi
N (η+N

2 )

N
2
−1∑

t=0

u2t+1e
− 2πi
N/2(η+N

2 )t . (A.12)

Due to periodicity, it is possible to use the following relations,

e−
2πi
N/2(η+N

2 )t = e−
2πi
N/2

ηt , (A.13) e−
2πi
N (η+N

2 )t = −e−
2πi
N
ηt . (A.14)

Then, Eqn. A.12 becomes,

Uη = Aη −W η
NBη . (A.15)

Eqn. A.10 and Eq. A.15 can be represented in Fig. A.1. This scheme is called the

butterfly structure of the FFT [68].

Figure A.1: The butterfly structure of the FFT

In Fig. A.2, the FFT scheme is shown for the case where the sample number is 8. As

103



shown, DFTs are formed by dividing the data into two continuously. This example is

valid when the number of data is a power of 2.

Figure A.2: The scheme of the FFT for N = 8

It is also possible to use FFT when the number of samples does not have a power of

2. For example, Fourier transform can be applied for any number of samples with

Matlab’s "fft" command. In this case, the logic of applying the method is the same.

However, the contents of the smaller number of DFTs divided are different.

104



APPENDIX B

RESULT TABLES OF CASES OF DOGAN ET AL.

B.1 Dogan et al.-Case 0

Table B.1: Results of Dogan et al.-Case 0-Point 0A (from raw data of Dogan et al. [27])

U =4.691 m/s Iact=0.2188 n=4.625 B=0.3333
u′ =102.7 cm/s Icalc=0.2188 P (1)=0.3910 A=0.9693

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3910 0.3910

0.0137
1 0.3746 0.2451 4.080 0.3847 0.3493

0.0128
2 0.4719 0.3897 2.566 0.3743 0.3327

0.0354
5 0.6349 0.7215 1.386 0.3493 0.3016

0.0604
10 0.8087 1.146 0.8730 0.3138 0.2656

0.1022
20 1.012 1.818 0.5501 0.2640 0.2224

0.1879
50 1.282 3.419 0.2925 0.1927 0.1678

0.1623
100 1.493 5.625 0.1778 0.1399 0.1297

0.1678
200 1.707 9.450 0.1058 0.0941 0.0967

0.1804
500 1.948 19.50 0.0513 0.0548 0.0666

0.0598
1000 2.059 34.78 0.0288 0.0412 0.0552

0.0153
2000 2.094 64.25 0.0156 0.0374 0.0518

0.0019
5000 2.099 151.8 0.0066 0.0369 0.0514

0.00002
10000 2.099 297.6 0.0034 0.0369 0.0514

105



Table B.2: Results of Dogan et al.-Case 0-Point 0B (from raw data of Dogan et al. [27])

U =7.157 m/s Iact=0.1030 n=11.09 B=0.2812
u′ =73.74 cm/s Icalc=0.1030 P (1)=0.3998 A=0.9668

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3998 0.3998

0.0209
1 0.4280 0.2770 3.610 0.4231 0.3177

0.0154
2 0.5200 0.4568 2.189 0.4161 0.2971

0.0450
5 0.6906 0.8791 1.138 0.3905 0.2589

0.0781
10 0.8795 1.422 0.7033 0.3442 0.2181

0.1273
20 1.097 2.284 0.4379 0.2735 0.1751

0.1970
50 1.359 4.366 0.2291 0.1797 0.1311

0.1554
100 1.564 7.280 0.1374 0.1132 0.1026

0.1428
200 1.768 12.39 0.0807 0.0625 0.0793

0.1347
500 1.990 26.00 0.0385 0.0272 0.0590

0.0565
1000 2.126 46.70 0.0214 0.0147 0.0490

0.0223
2000 2.196 86.13 0.0116 0.0104 0.0444

0.0045
5000 2.212 202.1 0.0049 0.0095 0.0434

0.00009
10000 2.213 394.7 0.0025 0.0095 0.0433
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Table B.3: Results of Dogan et al.-Case 0-Point 0C (from raw data of Dogan et al. [27])

U =9.457 m/s Iact=0.0448 n=27.21 B=0.1489
u′ =42.38 cm/s Icalc=0.0448 P (1)=0.4056 A=0.9822

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4056 0.4056

0.0314
1 0.4877 0.3572 2.800 0.4472 0.2932

0.0105
2 0.5407 0.6455 1.549 0.4433 0.2804

0.0286
5 0.6507 1.392 0.7183 0.4288 0.2544

0.0467
10 0.7811 2.428 0.4119 0.4002 0.2250

0.0944
20 0.9695 4.122 0.2426 0.3393 0.1861

0.2088
50 1.260 8.112 0.1233 0.2177 0.1358

0.1960
100 1.509 13.47 0.0743 0.1175 0.1017

0.1672
200 1.746 22.58 0.0443 0.0501 0.0763

0.1419
500 1.999 46.34 0.0216 0.0139 0.0555

0.0525
1000 2.151 82.06 0.0122 0.0051 0.0456

0.0185
2000 2.223 149.8 0.0067 0.0030 0.0416

0.0032
5000 2.237 349.3 0.0029 0.0026 0.0408

0.00006
10000 2.238 680.6 0.0015 0.0026 0.0408

107



Table B.4: Results of Dogan et al.-Case 0-Point 0D (from raw data of Dogan et al. [27])

U =10.11 m/s Iact=0.0070 n=180.8 B=0.0340
u′ =7.113 cm/s Icalc=0.0070 P (1)=0.4099 A=0.9969

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4099 0.4099

0.9528
1 1.516 0.6030 1.658 0.1021 0.0959

0.0176
2 1.553 1.179 0.8484 0.0892 0.0919

0.0108
5 1.576 2.873 0.3481 0.0812 0.0893

0.0020
10 1.581 5.670 0.1764 0.0797 0.0888

0.0027
20 1.587 11.25 0.0889 0.0777 0.0882

0.0060
50 1.601 27.87 0.0359 0.0733 0.0867

0.0012
100 1.604 55.42 0.0180 0.0724 0.0864

0.0001
200 1.605 110.5 0.0091 0.0723 0.0864

0.00003
500 1.605 275.6 0.0036 0.0723 0.0864

0.00002
1000 1.605 550.8 0.0018 0.0723 0.0864

0.00002
2000 1.605 1101 0.0009 0.0723 0.0864

0.0001
5000 1.605 2752 0.0004 0.0722 0.0863

0.0004
10000 1.606 5503 0.0002 0.0719 0.0862
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B.2 Dogan et al.-Case 1

Table B.5: Results of Dogan et al.-Case 1-Point 1A (from raw data of Dogan et al. [27])

U =2.833 m/s Iact=0.2743 n=3.496 B=0.3548
u′ =77.71 cm/s Icalc=0.2743 P (1)=0.3880 A=0.9900

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3880 0.3880

0.0490
1 0.5744 0.2182 4.583 0.3396 0.3292

0.0467
2 0.7345 0.3417 2.926 0.3092 0.2989

0.1007
5 0.9573 0.6285 1.591 0.2599 0.2518

0.0960
10 1.122 1.017 0.9829 0.2210 0.2157

0.1243
20 1.302 1.685 0.5936 0.1788 0.1769

0.2086
50 1.558 3.381 0.2958 0.1241 0.1265

0.1601
100 1.762 5.817 0.1719 0.0876 0.0919

0.1286
200 1.945 10.18 0.0982 0.0614 0.0662

0.0748
500 2.075 22.25 0.0450 0.0464 0.0510

0.0101
1000 2.098 41.63 0.0240 0.0441 0.0486

0.0011
2000 2.100 80.15 0.0125 0.0438 0.0483

0.00005
5000 2.101 195.6 0.0051 0.0438 0.0483

0.000001
10000 2.101 388.1 0.0026 0.0438 0.0483
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Table B.6: Results of Dogan et al.-Case 1-Point 1B (from raw data of Dogan et al. [27])

U =4.294 m/s Iact=0.1439 n=7.599 B=0.3408
u′ =61.80 cm/s Icalc=0.1439 P (1)=0.3963 A=0.9621

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3963 0.3963

0.0968
1 0.7156 0.2155 4.640 0.3658 0.2639

0.0818
2 0.9063 0.3409 2.933 0.3194 0.2232

0.1521
5 1.153 0.6371 1.570 0.2446 0.1743

0.1180
10 1.323 1.048 0.9544 0.1903 0.1445

0.1037
20 1.468 1.776 0.5630 0.1460 0.1216

0.1388
50 1.656 3.729 0.2682 0.0963 0.0960

0.1071
100 1.818 6.655 0.1503 0.0623 0.0773

0.0941
200 1.981 12.01 0.0833 0.0373 0.0615

0.0799
500 2.144 26.80 0.0373 0.0204 0.0483

0.0224
1000 2.208 50.16 0.0199 0.0157 0.0438

0.0049
2000 2.225 96.02 0.0104 0.0146 0.0427

0.0004
5000 2.226 233.1 0.0043 0.0145 0.0426

0.000004
10000 2.226 461.4 0.0022 0.0145 0.0426
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Table B.7: Results of Dogan et al.-Case 1-Point 1C (from raw data of Dogan et al. [27])

U =5.711 m/s Iact=0.0926 n=12.49 B=0.3575
u′ =52.88 cm/s Icalc=0.0926 P (1)=0.4008 A=0.9688

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4008 0.4008

0.1563
1 0.8363 0.2211 4.522 0.3612 0.2246

0.1328
2 1.071 0.3457 2.893 0.2856 0.1776

0.2204
5 1.360 0.6390 1.565 0.1791 0.1292

0.1423
10 1.552 1.047 0.9550 0.1150 0.1028

0.1126
20 1.720 1.774 0.5638 0.0701 0.0834

0.1016
50 1.894 3.747 0.2669 0.0375 0.0666

0.0554
100 2.017 6.785 0.1474 0.0221 0.0565

0.0405
200 2.124 12.52 0.0798 0.0131 0.0488

0.0298
500 2.218 28.94 0.0345 0.0079 0.0429

0.0071
1000 2.245 55.57 0.0180 0.0067 0.0413

0.0012
2000 2.250 108.5 0.0092 0.0066 0.0410

0.00008
5000 2.250 266.9 0.0037 0.0065 0.0410

0.000004
10000 2.250 530.9 0.0019 0.0065 0.0410
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Table B.8: Results of Dogan et al.-Case 1-Point 1D (from raw data of Dogan et al. [27])

U =6.126 m/s Iact=0.0735 n=16.06 B=0.3526
u′ =45.03 cm/s Icalc=0.0735 P (1)=0.4026 A=0.9734

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4026 0.4026

0.1282
1 0.7817 0.2757 3.627 0.3851 0.2316

0.1109
2 0.9981 0.4325 2.312 0.3181 0.1871

0.2265
5 1.314 0.7946 1.259 0.1958 0.1327

0.1735
10 1.539 1.284 0.7790 0.1146 0.1018

0.1211
20 1.721 2.140 0.4673 0.0647 0.0815

0.1077
50 1.909 4.447 0.2249 0.0304 0.0641

0.0552
100 2.034 7.986 0.1252 0.0166 0.0544

0.0373
200 2.142 14.67 0.0682 0.0091 0.0471

0.0262
500 2.231 33.81 0.0296 0.0052 0.0418

0.0056
1000 2.255 64.91 0.0154 0.0045 0.0405

0.0008
2000 2.258 126.8 0.0079 0.0044 0.0403

0.00004
5000 2.258 312.1 0.0032 0.0044 0.0403

0.000007
10000 2.258 621.0 0.0016 0.0044 0.0403
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B.3 Dogan et al.-Case 2

Table B.9: Results of Dogan et al.-Case 2-Point 2A (from raw data of Dogan et al. [27])

U =3.826 m/s Iact=0.2867 n=3.306 B=0.3430
u′ =109.7 cm/s Icalc=0.2867 P (1)=0.3874 A=0.9967

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3874 0.3874

0.0649
1 0.6310 0.1381 7.239 0.3252 0.3229

0.0575
2 0.8004 0.2182 4.584 0.2910 0.2897

0.1187
5 1.033 0.4056 2.465 0.2386 0.2393

0.1044
10 1.198 0.6624 1.510 0.2003 0.2026

0.1037
20 1.347 1.113 0.8989 0.1669 0.1704

0.1515
50 1.542 2.302 0.4344 0.1266 0.1310

0.1270
100 1.710 4.063 0.2461 0.0965 0.1009

0.1237
200 1.882 7.252 0.1379 0.0706 0.0743

0.1105
500 2.053 15.98 0.0626 0.0499 0.0524

0.0305
1000 2.118 29.71 0.0337 0.0434 0.0453

0.0067
2000 2.134 56.65 0.0177 0.0418 0.0436

0.0008
5000 2.136 137.1 0.0073 0.0416 0.0434

0.00001
10000 2.136 271.2 0.0037 0.0416 0.0434
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Table B.10: Results of Dogan et al.-Case 2-Point 2B (from raw data of Dogan et al. [27])

U =5.543 m/s Iact=0.1769 n=5.973 B=0.3317
u′ =98.03 cm/s Icalc=0.1769 P (1)=0.3938 A=0.9626

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3938 0.3938

0.1084
1 0.7446 0.1288 7.764 0.3450 0.2667

0.0865
2 0.9371 0.2050 4.877 0.2982 0.2259

0.1829
5 1.216 0.3836 2.607 0.2183 0.1704

0.1335
10 1.400 0.6287 1.591 0.1654 0.1380

0.1069
20 1.548 1.064 0.9402 0.1262 0.1149

0.1127
50 1.706 2.245 0.4453 0.0900 0.0931

0.0777
100 1.829 4.058 0.2464 0.0665 0.0783

0.0720
200 1.954 7.447 0.1343 0.0472 0.0651

0.0742
500 2.096 16.94 0.0590 0.0305 0.0523

0.0312
1000 2.172 31.96 0.0313 0.0236 0.0462

0.0116
2000 2.206 61.24 0.0163 0.0210 0.0437

0.0023
5000 2.213 148.3 0.0067 0.0204 0.0432

0.0001
10000 2.213 293.1 0.0034 0.0204 0.0432
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Table B.11: Results of Dogan et al.-Case 2-Point 2C (from raw data of Dogan et al. [27])

U =7.349 m/s Iact=0.1380 n=7.976 B=0.3441
u′ =101.4 cm/s Icalc=0.1380 P (1)=0.3968 A=0.9625

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3968 0.3968

0.1431
1 0.8148 0.1159 8.626 0.3459 0.2409

0.1159
2 1.034 0.1829 5.466 0.2839 0.1956

0.2505
5 1.362 0.3381 2.958 0.1783 0.1370

0.1619
10 1.573 0.5492 1.821 0.1164 0.1061

0.1092
20 1.732 0.9241 1.082 0.0781 0.0863

0.0930
50 1.884 1.952 0.5123 0.0498 0.0702

0.0476
100 1.981 3.555 0.2813 0.0360 0.0613

0.0338
200 2.060 6.621 0.1510 0.0270 0.0547

0.0294
500 2.135 15.48 0.0646 0.0201 0.0489

0.0112
1000 2.169 29.88 0.0335 0.0175 0.0465

0.0038
2000 2.181 58.36 0.0171 0.0166 0.0457

0.0006
5000 2.184 143.5 0.0070 0.0164 0.0455

0.00001
10000 2.184 285.4 0.0035 0.0164 0.0455
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Table B.12: Results of Dogan et al.-Case 2-Point 2D (from raw data of Dogan et al. [27])

U =7.982 m/s Iact=0.1187 n=9.468 B=0.3144
u′ =94.74 cm/s Icalc=0.1187 P (1)=0.3984 A=0.9643

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3984 0.3984

0.1292
1 0.7864 0.1230 8.130 0.3617 0.2419

0.0940
2 0.9778 0.1982 5.046 0.3082 0.2020

0.2094
5 1.272 0.3751 2.666 0.2094 0.1480

0.1729
10 1.496 0.6148 1.627 0.1360 0.1139

0.1353
20 1.683 1.032 0.9689 0.0851 0.0901

0.1184
50 1.867 2.153 0.4645 0.0481 0.0707

0.0562
100 1.982 3.876 0.2580 0.0317 0.0604

0.0378
200 2.073 7.147 0.1399 0.0220 0.0532

0.0318
500 2.159 16.55 0.0604 0.0150 0.0470

0.0121
1000 2.199 31.77 0.0315 0.0125 0.0444

0.0041
2000 2.213 61.84 0.0162 0.0116 0.0435

0.0007
5000 2.216 151.7 0.0066 0.0115 0.0433

0.00001
10000 2.216 301.3 0.0033 0.0115 0.0433
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APPENDIX C

RESULT TABLES OF CASES OF ABDULRAHIM ET AL.

C.1 Abdulrahim et al.-Case 3

Table C.1: Results of Abdulrahim et al.-Case 3-Point 3A (from raw data of Abdulrahim et

al. [1])

U =7.117 m/s Iact=0.1320 n=8.389 B=0.3241
u′ =94.63 cm/s Icalc=0.1320 P (1)=0.3972 A=0.9629

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3972 0.3972

0.0313
1 0.4909 0.2001 4.998 0.4060 0.3097

0.0273
2 0.6146 0.3202 3.123 0.3900 0.2828

0.1043
5 0.8852 0.5858 1.707 0.3301 0.2244

0.1373
10 1.117 0.9175 1.090 0.2592 0.1783

0.1255
20 1.298 1.467 0.6815 0.1992 0.1462

0.1657
50 1.514 2.884 0.3467 0.1320 0.1133

0.1187
100 1.682 4.962 0.2015 0.0882 0.0916

0.1066
200 1.848 8.724 0.1146 0.0545 0.0735

0.1077
500 2.037 18.98 0.0527 0.0282 0.0564

0.0487
1000 2.154 34.82 0.0287 0.0176 0.0476

0.0212
2000 2.218 65.20 0.0153 0.0133 0.0432

0.0058
5000 2.238 154.6 0.0065 0.0121 0.0419
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Table C.2: Results of Abdulrahim et al.-Case 3-Point 3B (from raw data of Abdulrahim et

al. [1])

U =9.560 m/s Iact=0.0697 n=17.01 B=0.2957
u′ =66.63 cm/s Icalc=0.0697 P (1)=0.4030 A=0.9744

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4030 0.4030

0.0271
1 0.4655 0.2877 3.476 0.4361 0.3031

0.0212
2 0.5714 0.4696 2.130 0.4269 0.2783

0.0777
5 0.8022 0.8815 1.135 0.3817 0.2263

0.1242
10 1.033 1.396 0.7166 0.3068 0.1797

0.1573
20 1.258 2.219 0.4506 0.2181 0.1407

0.2198
50 1.529 4.250 0.2353 0.1171 0.1026

0.1389
100 1.731 7.142 0.1400 0.0612 0.0801

0.0974
200 1.907 12.33 0.0811 0.0296 0.0640

0.0846
500 2.096 26.46 0.0378 0.0112 0.0500

0.0351
1000 2.207 48.37 0.0207 0.0057 0.0431

0.0135
2000 2.260 90.59 0.0110 0.0040 0.0401

0.0032
5000 2.274 215.4 0.0046 0.0036 0.0393

118



Table C.3: Results of Abdulrahim et al.-Case 3-Point 3C (from raw data of Abdulrahim et

al. [1])

U =11.02 m/s Iact=0.0055 n=229.9 B=0.1930
u′ =6.107 cm/s Icalc=0.0055 P (1)=0.4101 A=0.9975

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4101 0.4101

0.0581
1 0.5967 2.137 0.4680 0.4597 0.2591

0.0255
2 0.6821 3.746 0.2670 0.4459 0.2387

0.0666
5 0.8443 7.791 0.1284 0.4022 0.2028

0.1146
10 1.044 13.24 0.0755 0.3210 0.1639

0.1402
20 1.245 22.23 0.0450 0.2230 0.1312

0.1957
50 1.494 44.77 0.0223 0.1098 0.0982

0.1294
100 1.696 77.02 0.0130 0.0472 0.0772

0.1055
200 1.907 134.1 0.0075 0.0139 0.0598

0.0538
500 2.066 289.5 0.0035 0.0042 0.0492

0.0386
1000 2.208 530.3 0.0019 0.0011 0.0412

0.0259
2000 2.319 985.0 0.0010 0.0003 0.0359

0.0461
5000 2.513 2263 0.0004 0.00002 0.0281
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Table C.4: Results of Abdulrahim et al.-Case 3-Point 3D (from raw data of Abdulrahim et

al. [1])

U =10.93 m/s Iact=0.0052 n=244.9 B=0.1149
u′ =5.691 cm/s Icalc=0.0052 P (1)=0.4101 A=0.9977

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4101 0.4101

0.2916
1 1.022 1.221 0.8190 0.3315 0.1680

0.0502
2 1.106 2.259 0.4427 0.2916 0.1531

0.0827
5 1.232 5.092 0.1964 0.2291 0.1330

0.0709
10 1.341 9.382 0.1066 0.1761 0.1174

0.0845
20 1.471 17.24 0.0580 0.1189 0.1009

0.1054
50 1.640 38.53 0.0260 0.0614 0.0826

0.0796
100 1.798 70.65 0.0142 0.0275 0.0683

0.0647
200 1.959 129.4 0.0077 0.0096 0.0561

0.0458
500 2.107 292.4 0.0034 0.0029 0.0467

0.0426
1000 2.267 544.8 0.0018 0.0006 0.0383

0.0290
2000 2.394 1019 0.0010 0.0001 0.0327

0.0528
5000 2.620 2340 0.0004 0.000003 0.0245
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C.2 Abdulrahim et al.-Case 4

Table C.5: Results of Abdulrahim et al.-Case 4-Point 4A (from raw data of Abdulrahim et

al. [1])

U =6.777 m/s Iact=0.1388 n=7.926 B=0.3130
u′ =94.02 cm/s Icalc=0.1388 P (1)=0.3967 A=0.9624

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.3967 0.3967

0.1181
1 0.7644 0.1272 7.859 0.3576 0.2519

0.0864
2 0.9496 0.2052 4.873 0.3091 0.2129

0.1473
5 1.181 0.3934 2.542 0.2368 0.1681

0.1337
10 1.367 0.6557 1.525 0.1767 0.1363

0.1058
20 1.515 1.119 0.8933 0.1323 0.1141

0.1255
50 1.690 2.370 0.4219 0.0874 0.0913

0.0880
100 1.832 4.268 0.2343 0.0588 0.0756

0.0763
200 1.970 7.783 0.1285 0.0376 0.0623

0.0737
500 2.123 17.58 0.0569 0.0212 0.0499

0.0309
1000 2.208 33.01 0.0303 0.0149 0.0439

0.0116
2000 2.246 63.01 0.0159 0.0126 0.0414

0.0027
5000 2.256 152.1 0.0066 0.0121 0.0408
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Table C.6: Results of Abdulrahim et al.-Case 4-Point 4B (from raw data of Abdulrahim et

al. [1])

U =8.420 m/s Iact=0.0959 n=12.01 B=0.3202
u′ =80.74 cm/s Icalc=0.0959 P (1)=0.4004 A=0.9681

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4004 0.4004

0.1755
1 0.8696 0.1316 7.596 0.3503 0.2184

0.1248
2 1.086 0.2113 4.734 0.2796 0.1757

0.2078
5 1.359 0.4022 2.486 0.1794 0.1298

0.1220
10 1.529 0.6717 1.489 0.1227 0.1062

0.1158
20 1.699 1.154 0.8666 0.0760 0.0860

0.1067
50 1.875 2.461 0.4064 0.0412 0.0685

0.0539
100 1.992 4.473 0.2236 0.0254 0.0586

0.0402
200 2.095 8.281 0.1208 0.0158 0.0509

0.0355
500 2.200 19.15 0.0522 0.0092 0.0440

0.0128
1000 2.246 36.66 0.0273 0.0071 0.0413

0.0040
2000 2.262 71.18 0.0140 0.0064 0.0403

0.0008
5000 2.265 174.3 0.0057 0.0063 0.0401
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Table C.7: Results of Abdulrahim et al.-Case 4-Point 4C (from raw data of Abdulrahim et

al. [1])

U =9.571 m/s Iact=0.0711 n=16.64 B=0.3248
u′ =68.08 cm/s Icalc=0.0711 P (1)=0.4028 A=0.9740

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4028 0.4028

0.1296
1 0.7844 0.1743 5.738 0.3856 0.2305

0.0997
2 0.9824 0.2788 3.587 0.3245 0.1896

0.1895
5 1.252 0.5266 1.899 0.2204 0.1419

0.1890
10 1.493 0.8629 1.159 0.1293 0.1073

0.1401
20 1.693 1.442 0.6934 0.0705 0.0841

0.1142
50 1.886 2.990 0.3345 0.0330 0.0659

0.0521
100 2.009 5.359 0.1866 0.0184 0.0562

0.0380
200 2.116 9.835 0.1017 0.0102 0.0487

0.0325
500 2.222 22.60 0.0442 0.0053 0.0423

0.0113
1000 2.267 43.16 0.0232 0.0039 0.0397

0.0034
2000 2.282 83.74 0.0119 0.0035 0.0389

0.0008
5000 2.286 205.0 0.0049 0.0034 0.0388
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Table C.8: Results of Abdulrahim et al.-Case 4-Point 4D (from raw data of Abdulrahim et

al. [1])

U =10.93 m/s Iact=0.0211 n=59.38 B=0.4284
u′ =23.05 cm/s Icalc=0.0211 P (1)=0.4082 A=0.9910

f ∆G x k L PR(x) PL(x)
Hz - - cm−1 cm - -
0 - - - 0.4082 0.4082

0.0413
1 0.5335 0.8941 1.118 0.4569 0.2776

0.0535
2 0.7179 1.330 0.7520 0.4291 0.2338

0.1273
5 0.9754 2.296 0.4356 0.3460 0.1799

0.1559
10 1.204 3.547 0.2819 0.2432 0.1402

0.1815
20 1.439 5.610 0.1783 0.1371 0.1070

0.1847
50 1.691 10.84 0.0923 0.0542 0.0793

0.0996
100 1.883 18.46 0.0542 0.0201 0.0627

0.0688
200 2.062 32.28 0.0310 0.0060 0.0501

0.0589
500 2.255 70.17 0.0143 0.0011 0.0393

0.0187
1000 2.338 129.5 0.0077 0.0005 0.0354

0.0064
2000 2.370 245.4 0.0041 0.0003 0.0340

0.0035
5000 2.387 589.3 0.0017 0.0003 0.0332
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